102. Synthese der (3S,4R,3'S,4'R)- und (3S,4S,3'S,4'S)-Crustaxanthine sowie weiterer Verbindungen mit 3,4-Dihydroxy-β-Endgruppen

von Daniel Jacques Buschor¹) und Conrad Hans Eugster*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(19. IV. 90)

Synthesis of (3S,4R,3'S,4'R)- and (3S,4S,3'S,4'S)-Crustaxanthins and Further Compounds with 3,4-Dihydroxy β -End-groups

Starting from 3, the enantiomerically pure title compounds were synthesized in eight steps. Spectra and HPLC systems are presented that allow a distinction between these isomers.

1. Einleitung. – Den Namen 'Crustaxanthin' haben Bodea et al. einem von ihnen im Kleinkrebs Arctodiaptomus salinus entdeckten Carotinoid gegeben [2] [3]. Aufgrund von UV/VIS-Spektren, wenigen chemischen Reaktionen und dem chromatographischen Vergleich mit einem durch Borhydrid-Reduktion an Astaxanthin hergestellten Produkt wiesen die rumänischen Autoren dem neuen Carotinoid die Konstitution 1 zu [4]. In der Natur liegt es in veresterter Form vor.

Ein weiteres Crustaxanthin wurde kurz danach in Blüten von Adonis aestivalis [5] [6], in der Alge Haematococcus pluvialis [7] sowie in Artemia salina [8] aufgefunden. Seither ist 1 vor allem in Crustaceen und Fischen nachgewiesen worden; vgl. [9]. Neben Crustaxanthin weisen etwa ein Dutzend weiterer Carotinoide eine 3,4-Dihydroxy- β - und eine 3,4-Dihydroxy-5,6-dihydroxy- β -Endgruppe auf.

Uns interessierte eine eindeutige und enantioselektive Synthese von Carotinoiden der Konstitution 1 aus mehreren Gründen: 1) Festlegung der absoluten Konfiguration, denn die Struktur der Crustaxanthine ist bis heute offengeblieben; 2) Bestätigung der Struktur

¹) Aus der Dissertation [1].

von Lilixanthin (2), das wir vor wenigen Jahren aus Antheren einer Lilienhybride in winziger Menge isoliert haben [10]; 3) Synthesen von C_{13} - und C_{15} -Verbindungen mit 3,4-Dihydroxy- β -Endgruppen im Zusammenhang mit neueren Befunden über ihr Vorkommen als Glykoside in Pflanzen [11]; 4) Messung von chiroptischen und spektroskopischen Daten, auch im Zusammenhang mit der 4-Hydroxy- β -Endgruppe [12].

An und für sich wäre es naheliegend, durch Reduktion von enantiomerenreinem Astaxanthin ein Gemisch von Crustaxanthinen herzustellen und dieses chromatographisch aufzutrennen. Solche Reduktionen sind schon oft ausgeführt worden, doch bestehen für die (wenigen) Fälle, wo Versuche zur Trennung vorgenommen wurden, widersprüchliche Aussagen über den Erfolg; vgl. z. B. [13] [14]. Wir haben diesen Weg nicht beschritten, weil wir auch solche Vorstufen der Synthese herstellen und charakterisieren wollten, die später für die Synthesen von nicht symmetrischen Carotinoiden mit 3,4-Dihydroxy- β -Endgruppen dienen können. Vor allem wollten wir einen präparativen Weg eröffnen, der ein völlig eindeutiges Resultat voraussehen liess. Deshalb verzichteten wir auch auf mögliche Synthesewege, welche z. B. aus optisch-aktivem Zeaxanthin durch eine Allyl-Oxydation die fehlende Funktion an C(4) einzuführen erlauben; vgl. [15].

2. Synthese von cis- und trans-3,4-Dihydroxy- α -ionon-Derivaten (Schema 1). – Ausgehend vom kürzlich beschriebenen Synthon 3 [16] wurde zuerst der Aldehyd 4 und daraus mit einer Wittig-Horner-Reaktion der C₁₅-Ester 5 hergestellt. Die Acetal-Spaltung mit katalytischen Mengen an TsOH in Aceton erfolgte unter Öffnung des Oxirans wie in [16] bereits beschrieben. Reduktion der Keto-Gruppe mit 9-Borabicyclononan [17] gab das Gemisch der diasteroisomeren Allylalkohole 9 und 10, die chromatographisch getrennt wurden.

Für die Allyl-Umlagerung wurde 9 zu 11 acetyliert und dieses hierauf unter relativ drastischen Bedingungen ($AcOH/Ac_2O/H_2SO_4$; vgl. ähnliche Umlagerungen in [18–21])

isomerisiert. Wir fanden keine Bedingungen, die Umlagerung stereoselektiv zu gestalten. Die beiden Epimeren 17 und 18 entstanden in etwa gleicher Menge. Die chromatographische Trennung erfolgte am einfachsten auf der Stufe der Diole 19 und 20. Da sich diese Verbindungen wenig für weitere Umwandlungen eigneten, wurde die Synthese auf das von *Lugtenburg et al.* [22] in der Polyen-Reihe verwendete C_5 -Nitril von [23] umgestellt. Aus 4 entstand auf diesem Weg in sehr guter Ausbeute das C_{15} -Nitril 6.

Nach Acetal-Spaltung und Reduktion der (C=O)-Gruppe mit 9-Borabicyclononan wurden die im Verhältnis 3:2 gebildeten Epimeren 13/14 chromatographisch getrennt. Die einzelnen Isomeren gaben nach Acetylierung und Allyl-Umlagerung wie beschrieben die jeweiligen Gemische an *cis, trans*-3,4-Diolen. Ihre Trennung wurde durch Säulenchromatographie an Kieselgel ausgeführt. Die Isomeren 23 und 24 kristallisieren leicht. Während der Allyl-Umlagerung findet offensichtlich auch eine praktisch vollständige Isomerisation zum (all-*E*)-Isomeren statt. Dieselben Reaktionen wurden auch an den *cis*-Diolen 14 bzw. 16 ausgeführt, wobei die Enantiomeren von 23 und 24 erhalten wurden. Aus äusseren Gründen erfolgte jedoch keine weitere Bearbeitung; CD s. *Fig. 1* und 2.

Die in Schema 1 vorweggenommenen Strukturen für die Verbindungen 9–28 bedürfen einer näheren Erläuterung. Wie aus früheren Untersuchungen an 3,6-disubstituierten α -Ionon- und ε -Carotin-Derivaten vorauszusehen war (s. z. B. [24] [25]), unterscheiden sich diese *cis-/trans*-Isomeren in ihren Spektren sehr wenig. Aus unserer früheren Konformationsanalyse der stereoisomeren 3-Methoxy- α -ionone ging hervor [24], dass das *cis*-Isomere eine Halbsessel-Konformation mit *P*-Helix, d. h. mit ψ -äquatorialer MeO-Gruppe und ψ -axialer Seitenkette bevorzugt. Dies steht in Übereinstimmung mit Voraussagen von Labhart und Wagnière [26] sowie von Moscowitz et al. [27] und Ohloff et al.

1005

[28]. Im *trans*-Isomeren hingegen liegt bevorzugt eine *M*-Helix mit ψ -äquatorialer MeO-Gruppe und ψ -äquatorialer Seitenkette vor. Diagnostisch wichtig ist für die Unterscheidung der *cis*- und *trans*-Isomeren die Grösse von ³J von H_{eq}-C(2) (1.67 ppm) mit H_{ax}-C(3) (5,37 ppm) von 6,6 Hz im *trans*-Isomeren²), während sie im *cis*-Isomeren 9,6 Hz beträgt [25].

Übertragen auf unsere Isomerenpaare 9–16 zeigen die O-Ac-Verbindungen 11 und 15 bzw. 12 und 16 diese Unterschiede besonders deutlich: im *trans*-Isomeren³) 11 und 15 ist ${}^{3}J(2, 3) = 9,5$ Hz, im *cis*-Isomerenpaar³) 12 und 16 jedoch 6,1 bzw. 6,2 Hz. In weiterer Übereinstimmung mit unseren älteren Messungen [25] zeigt H_{eq}-C(2) eine relativ grosse ${}^{4}J$ -Kopplung mit H-C(4) von 1,5 Hz, die in den *cis*-Isomeren fehlt.

Die unterschiedlichen Konformationen der Verbindungen müssen sich auch in den CD-Spektren auswirken. Man darf erwarten, dass immer dann, wenn die ungesättigte Seitenkette ψ -axial steht, eine stärkere Wechselwirkung zwischen der (C(4)=C(5))-Bindung und dem π -System der Polyen-Kette eintritt und folglich höhere $\Delta \varepsilon$ -Werte resultieren. Die Messungen bestätigen dies: in den *cis/trans*-Paaren 9/10, 11/12, 13/14 und 15/16 besitzt stets die *trans*-Verbindung³) die grössere Elliptizität; die $\Delta \varepsilon$ -Werte erreichen nahezu die doppelte Grösse.

Charakteristische Unterschiede finden sich auch am *AB*-System von H-C(7)/H-C(8). Sie dürften ebenfalls auf die unterschiedliche Konformation der Halbsessel zurückzuführen sein (¹³C-NMR-Daten, s. *Exper. Teil*).

Um das Ergebnis dieses Vergleichs zu sichern, wurde an 11 eine Einkristall-Röntgenstrukturanalyse ausgeführt (s. *Fig. 3*). Das Ergebnis bestätigt die aus spektroskopischen Daten gezogenen Schlussfolgerungen.

Fig. 3. Röntgenstruktur von (+)-11

Die bei der Allyl-Umlagerung erhaltenen *cis*- und *trans*-3,4-Dihydroxy-Verbindungen 17, 18, 21, 22 boten bei der Strukturzuweisung ebenfalls gewisse Schwierigkeiten. Hier konnte eine eindeutige Entscheidung auf folgendem Weg getroffen werden (s. *Schema 2*).

Aus 3,4-Didehydro- β -ionon [29] wurde das Epoxid (±)-**30** hergestellt und dieses einer Acetolyse unterworfen⁴); vgl. [30–32]. Allyl-Umlagerung ergab das *cis/trans*-Gemisch

cis bzw. trans bezieht sich in diesem Fall auf die gegenseitige Stellung von HO-C(3) und Seitenkette an C(6).
 cis bzw. trans bezieht sich auf die relative Stellung der OH-Gruppen.

Achtung: Explosionsgefahr! Vor der Ausarbeitung verbesserter Aufarbeitungsbedingungen trat eine heftige Explosion mit beträchtlichem Personen- und Sachschaden ein.

(±)-32. Nach Verseifung und Acetalisierung mit Benzaldehyd liessen sich Acetal (±)-34 und das unveränderte *trans*-Diol (±)-35 chromatographisch leicht trennen. Nach Hydrolyse von (±)-34 mit 80% AcOH bei RT. erhielten wir das reine *cis*-Diol (±)-36. H–C(3) zeigt in (±)-36 eine Tieffeldverschiebung im ¹H-NMR verglichen mit (±)-35 und vicinale Kopplungen von 12, 4 und 4 Hz, während diese in (±)-35 12, 8 und 4 Hz betragen. Daraus darf auf äquatoriale Lage von HO–C(3) und ψ -äquatoriale von HO–C(4) in (±)-35 bzw. von HO_{äq}–C(3) und OH_{ax}–C(4) in (±)-36 geschlossen werden. Diese spektralen Unterschiede wiederholen sich genau in den C₁₅-Verbindungen 27–28. Damit sind ihre Strukturen gesichert. Die Konformation der hydroxylierten β-Endgruppen wird in Bestätigung unserer vor längerer Zeit getroffenen Feststellung [24] [33] von der OH–C(3) dominiert. Die OH–C(4) beeinflusst, wie *Andrewes et al.* in ihrer Herleitung der absoluten Konfiguration von Astaxanthin gezeigt hatten [13], das Konformationsgleichgewicht nur in untergeordnetem Mass. Trotzdem zeigen die CD-Spektren der Epimeren 23 und 24 sowie 25 und 26 deutliche Unterschiede (s. *Fig. 1* und 2).

3. Synthese von Crustaxanthinen (Schema 3 und 4). – Wegen der Gefahr einer Elimination der O-Funktion an C(4) bei einer eventuellen Anionisierung eines endständigen Phosphonium-Salzes an der Polyen-Kette (vgl. unsere Erfahrungen mit Isozeaxanthin [12], Auroxanthinen [34] und Diepoxy- β , β -carotin [35]) kam für die Verwendung der C₁₅-Verbindungen nur die 'inverse' Olefinierung in Frage, d. h. es musste von den Endstücken mit (C=O)-Funktion ausgegangen und diese z. B. mit dem Bis-ylid aus einem C₁₀-Synthon kondensiert werden.

Ein Vorversuch mit dem geschützten Ionon-Derivat (\pm)-**34** führte über die C₁₅-Verbindung **37–39** und der doppelten Kondensation mit **40** [36] zum kristallinen (\pm)-*cis,cis*-Crustaxanthin **41**, bei dem die Abspaltung der Benzyliden-Schutzgruppe wegen der hohen Solvolyseneigung der OH–C(4) Schwierigkeiten bereitete. Zudem war die Ausbeute mit *ca.* 4% nicht ermutigend. Aus diesem Grund wurde im C₁₅-Acetal (\pm)-**39** die Benzyliden-Schutzgruppe mit 80% AcOH abgespalten, das freie Diol acetyliert (\rightarrow (\pm)-**42**) und dieses ebenfalls mit dem C₁₀-Bis-ylid **40** umgesetzt. Nach Reinigung durch Chromatographie und Umkristallisation erhielten wir das freie *cis,cis*-Crustaxanthin ((\pm)-**43**) als dunkelrotes Pulver. Ausbeute betrug ebenfalls nur *ca.* 2%.

Die weiteren Versuche wurden mit dem acetylenischen Diphosphonat 44 [36] [16] ausgeführt, bei dem die Elimination bei der Anionisierung nicht eintritt. Die Diole 23 und

24 wurden zunächst mit Me₁SiCl zu 25 und 26 veräthert und dann mit DIBAH zum Aldimin reduziert und dieses mit feuchtem Kieselgel/Et₂O hydrolysiert [22]. Die empfindlichen Aldehyde (-)-27 bzw. (-)-28 wurden sofort und ohne weitere Reinigung mit 44 kondensiert. Die acetylenischen Carotinoide 45 und 48 entstanden in guten Ausbeuten (60% bzw. 45% nach Chromatographie und Kristallisation). Halbreduktion von 45 zur (15Z)-Verbindung und ihre Isomerisation zu 46 verlief ohne Probleme. Nach Abspaltung der Me₃SiO-Gruppen mit (Bu)₄NF/THF erhielten wir das sehr gut kristallisierende cis, cis-Crustaxanthin 47 in rotvioletten, metallisch glänzenden Nädelchen.

Bei der analogen Reduktion von 48 traten Schwierigkeiten auf. Eine Halbreduktion konnte nur durch wiederholte Zugaben von Lindlar-Katalysator erreicht werden, wobei allerdings auch Überreduktion eintrat. Nach Isomerisation, Kristallisation und Entsilylierung wurde trans, trans-Crustaxanthin 50 in rot-violetten, prismatischen Nädelchen mit Metallglanz erhalten. Acetylierung gab das Tetraacetat 51⁵).

4. Eigenschaften der (3S,4R,3'S,4'R)- und (3S,4S,3'S,4'S)-Crustaxanthine (Tab.). – Da uns kein aus natürlichen Quellen isoliertes Crustaxanthin zur Verfügung stand, mussten sich unsere Vergleiche auf publizierte Daten beschränken.

	Naturprodukt	(±)–43 (cis/cis)	47 (<i>cis/cis</i>)	50 (trans/trans)
Schmp.	172–173° [3] 170–171° [7]	203,5–204,5°	207–207,5°	206,5–207°
VIS	452, 481 (in?) [2]	wie 47	425 (98600, sh)	425 (99 200, sh)
	450, 480 (Hexan am Ester) [5]		450,5 (143 200)	451 (142 600)
	425 (sh), 452 481 (EtOH) [7] 450, 477 (EtOH) [40]		478 (126900)	478 (124 300)
ORD	227 (-22300)	-		
(Dioxan)	273 (+7050 pk) 298 (-370 tr) 333 (0) [39] ^a)			
CD (RT.)	222 (-10,3)	-	222 (-13,2)	222 (-13,3)
	247 (+10,8)		248 (+10,0)	244 (+19,5)
	278 (-17,9)		281 (-14,6)	283 (-24,8)
	336 (+3,4) (EPA) [13] ^b)		337 (+4,0)	342 (+8,5)
¹ H-NMR		wie 47	$1,30 (ddd, H_{eq} - C(2))$	1,57 (dd); 1,39 (dd);
((D ₆)DMSO)			$1,68 (dd, H_{ax} - C(2))$	3,53 (dddd); 3,61 (dd);
			3,60 (dddd, H-C(3))	$1,70 (^{3}J(3,4) = 7)^{\circ})$
			3,68 (dd, H-C(4))	
			1,77 (CH ₃ C(5))	
			$({}^{3}J(3,4) = 4)^{c})$	

a) Originalpräparat von Bodea et al. ex Arctodiaptomus salinus.

Daten interpoliert aus Kurve; Messungen an Gemisch, das durch LiAlH4-Reduktion an (3S,3'S)-Di-O-aceb) tylastaxanthin hergestellt wurde.

c) Kopplungskonstanten gemessen an 46 bzw. an 49.

⁵⁾ Zum Problem der Acetylierung von 'Crustaxanthin' (racemisches Stereoisomerengemisch) s. [37].

Die Schmelzpunkte unserer Präparate liegen etwa 35° höher als die der Naturprodukte. Wir interpretieren diesen Befund so, dass wir annehmen, dass entweder Stereoisomerengemische vorgelegen haben, oder dass in der Natur andere Isomere als unsere symmetrischen *cis,cis*- oder *trans,trans*-Tetrole vorkommen – Reinheit der Isolate vorausgesetzt.

Fig.4. CD-Spektrum von 47 (EtOH, RT.)

Quantitative Elektronenspektren werden hier unseres Wissens zum erstenmal veröffentlicht. Die ε -Werte stimmen gut mit denen von Zeaxanthin [38] oder Isozeaxanthin [12] überein.

ORD-Daten von einem Originalpräparat von *Bodea et al.* [2] sind in [39] veröffentlicht worden. Der *Circulardichroismus (Fig. 4* und 5) zeigt, dass in der *trans,trans*-Verbindung **50** wesentlich höhere Elliptizitäten als bei der *cis,cis*-Verbindung **47** und auch beim Zeaxanthin [41] resultieren. Worauf dieser Effekt beruht, ist uns nicht bekannt. Unsere CD-Spektren stehen qualitativ in guter Übereinstimmung mit jenem, das von [13] an einem durch Reduktion von (3S,3'S)-Di-*O*-acetylastaxanthin erhaltenen Gemisch gemessen wurde. Aus den $\Delta \varepsilon$ -Werten kann, Additivität vorausgesetzt, auf ein Verhältnis *cis,cis/cis,trans/trans,trans = ca.* 5:12:6 geschlossen werden. Die relativ gute Übereinstimmung mit den Werten von [13] bestätigt andererseits die in der vorliegenden Arbeit angegebenen absoluten Konfigurationen.

Die ¹H- und ¹³C-NMR-Spektren der hier beschriebenen Crustaxanthine sind sich sehr ähnlich und erlauben nur bei genauen Messungen eine Differenzierung. Am deutlichsten erkennt man unterschiedliche Werte an ${}^{3}J(H-C(3), H-C(4))$, allerdings nicht in DMSO-Lösung, sondern an den Spektren der silylierten Verbindungen. Signifikante Hochfeld-

Fig. 6. HPLC von stereoisomeren Crustaxanthinen. a) Gemisch aus reduziertem (3S,3'S)-Astaxanthin; b) Zumischung von **47**; c) Zumischung von **50**. Pik 1 = cis, cis-, Pik 2 = cis, trans-, Pik 3 = trans, trans-Crustaxanthin.

verschiebungen von C(2), C(3), C(4) und $CH_3-C(5)$ finden sich in der *cis,cis*-Verbindung 47 verglichen mit 50. Ein erneuter Vergleich mit dem eingangs erwähnten Lilixanthin (2 [10]) wurde auf der Stufe seiner *O*-Acetyl-Verbindung mit 51 vorgenommen und zeigte die erwartete Übereinstimmung der Me-Signale im ¹H-NMR⁶).

Vorläufige HPLC-Untersuchungen (Fig. 6) zeigen, dass sich die beiden Crustaxanthine 47 und 50 gut trennen lassen. Wenn (3S,3'S)-Di-O-acetylastaxanthin analog

⁶) Die in [9] unter Nr. 354 angegebene Struktur von **2** enthält einen Fehler: die 3,4-Dihydroxy- β -Endgruppe ist *trans*- und nicht wie angegeben *cis*-konfiguriert.

[13] mit LiAlH₄ reduziert und das erhaltene Gemisch im HPLC untersucht wird, so ergibt eine Co-chromatographie mit 47 und 50, dass der *Pik 1* dem *cis,cis*-Isomeren 47, der *Pik* 3 dem *trans,trans*-Crustaxanthin (50) und der *Pik 2* folglich dem *cis,trans*-Crustaxanthin (3*S*,4*R*,3'*S*,4'*S*) zugeordnet werden müssen. Sie sind in unserem Beispiel im Verhältnis von *ca.* 5:12:8 entstanden. Am wenigsten wird demnach vom *cis,cis*-, am meisten vom *cis,trans*-Isomeren gebildet. Dies steht in qualitativer Übereinstimmung mit einer von *Weedon* gemachten, aber nicht näher spezifizierten Aussage [14].

Bei der Reduktion von racemischem Astaxanthin-diacetat erhielten wir ein Gemisch von stereoisomeren Crustaxanthinen, das theoretisch 6 im HPLC trennbare Stereoisomere enthalten sollte, nämlich die Enantiomerenpaare von 47 (*cis,cis*), 50 (*trans,trans*), (3SR,4RS,3'SR,4'SR) (= *cis,trans*), (3SR,4RS,3'RS,4'RS) (= *cis,trans*), *meso-cis,cis* und *meso-trans,trans*. Unter den verwendeten Bedingungen konnten jedoch nur 3 Pike beobachtet werden, die denjenigen im vorangehenden Experiment entsprachen. Vermutlich müsste für die Identifizierung der noch fehlenden Crustaxanthin-Isomeren im HPLC eine vorangehende Derivatisierung durchgeführt werden¹⁰).

Wir danken folgenden Personen und Institutionen für ihre bereitwillige Unterstützung dieser Arbeit: Frau dipl. chem. Edith Märki-Fischer für ihre Hilfe bei den HPLC-Untersuchungen, Herrn Urs Marti und Herrn Dr. Michael Gmünder für die Ausarbeitung der Synthese von (\pm) -31 sowie für die Messung von CD-Spektren, Herrn Dr. Albrecht Zumbrunn für die Aufnahme von NMR-Spektren, Herrn Dr. Roland Prewo für eine Röntgenstrukturanalyse, Frau Dr. Katharina Schiedt und Herrn Dr. Reinhard Zell, F. Hoffmann-La Roche AG, Basel, für die Überlassung von Astaxanthin-Proben, Herrn H. Frohofer und Mitarbeiterinnen für Verbrennungsanalysen und IR-Spektren, den NMR- und MS-Labors unseres Instituts für Spektren, Herrn Peter Uebelhart für ORD-Messungen, der Fa. Sandoz AG, Basel, für ein Doktorandenstipendium an D.J. Buschor und dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung.

Experimenteller Teil

1. Allgemeines. S. [42]; zusätzlich NMR: Bruker AM-400; Varian XL-200; CD: Jasco J-500 A mit Epson Computer QX-10 PC; Polarimetrie: Perkin-Elmer 241 bei 21°. HPLC: s. [43].

2. (+)-(S)-5-(1'-Hydroxy-2', 6', 6'-trimethyl-4'-oxocyclohex-2'-enyl)-3-methylpenta-2,4-diensäure-methylester (7; vgl. [16]). Die Lsg. von 1,44 g Epoxid 5 [16] in 35 ml Aceton wurde mit 85 mg TsOH · H₂O versetzt und 2 Tage bei RT. gerührt. Dann Zugabe von gepulvertem K₂CO₃ und Rühren, Konzentration i. V., Verdünnen mit Et₂O und Auswaschen mit NaHCO₃-Lsg. und Sole, Trocknen (MgSO₄), Eindampfen, Chromatographie an Kieselgel mit Hexan/Et₂O 1:1 + 1% MeOH: 1,04 g 7 (83%). Umkristallisation aus Aceton/Hexan, farblose Nadeln. Schmp. 110,1-111,1°. UV (Et₂O): 219 (12300), 263 (29400). CD (Et₂O, RT.): 206 (0), 227 (-37), 242 (0), 261 (+49,4), 296 (0). ¹H-NMR (80 MHz, CDCl₃)¹¹): 1,01, 1,11 (2 s, CH₃-C(1)); 1,89 (d, J = 1, 4, CH₃(18)); 2,01 (s, OH); 2,28 (d, J = 1, CH₃(19)); 3,72 (s, CH₃O); 5,85 (br. s, H-C(10)); 5,94 (br. s, H-C(4)); 6,13, 6,43, (AB, J = 16, H-C(7), H-C(8)). EI-MS: 278 (1, M⁺¹), 260 (2), 222 (7), 205 (4), 190 (100), 162 (30), 134 (40), 125 (11). Anal. ber. für C₁₆H₂₂O₄ (278,35): C 69,04, H 7,97; gef.: C 69,27, H 8,14.

3. (1'S,4'S)- und (1'S,4'R)-5-(1',4'-Dihydroxy-2',6',6'-trimethylcyclohex-2'-enyl)-3-methyl-2,4-pentadiensäure-methylester (9 und 10). Die Lsg. von 0,4 g 7 in 25 ml abs. THF wurde unter Ar und mit Rühren bei 0° mit 0,84 g 9-Borabicyclo[3.1.1]nonan versetzt. Nach 30 min bei 0° und 45 min bei RT. wurden 3 ml MeOH und 0,7 ml 2-Aminoethanol zugegeben. Nach Rühren über Nacht wurde i.V. eingedampft und der Rückstand mit CH₂Cl₂ extrahiert. Chromatographie an Kieselgel mit CH₂Cl₂/MeOH 39:1: 52 % 9, 37% 10 und 10% Mischfraktion.

¹⁰) Solche Versuche mussten aus äusseren Gründen abgebrochen werden.

¹¹) Numerierung gemäss Carotinoid-Nomenklatur.

Daten von **9**. Blassgelbes Öl. UV (Et₂O): 263,5 (17000). CD (Et₂O): 225 (-3,0), 235 (0), 261 (+13,6), 303 (0). ¹H-NMR (400 MHz, CDCl₃)¹¹): 0,91, 1,03 (2 s, CH₃-C(1)); 1,57 (dd, $J = 10, 13, H_{ax}$ -C(2)); 1,64 (br. s, CH₃-C(5)); 1,83 (ddd, $J = 13, 6, 1, H_{eq}$ -C(2)); 2,29 (d, $J = 1, CH_3(19)$); 3,72 (CH₃O); 4,31 (m, H-C(3)); 5,59 (m, H-C(4)); 5,83 (br. s, H-C(10)); 6,13, 6,33 (AB, J = 16, H-C(7), H-C(8)).

Daten von **10**. Schmp. 85°. UV (Et₂O): 261,5 (24100). CD (Et₂O): 211 (0), 257 (+7,8), 320 (0). ¹H-NMR (80 MHz, CDCl₃): 0,93, 0,98 (2 s, CH₃-C(1)); 1,65 (br. s, CH₃(18)); 2,28 (d, J = 1, CH₃(19)); 3,71 (CH₃O); 4,25 (m, H-C(3)); 5,62 (br. s, H-C(4)); 5,82 (br. s, H-C(0)); 5,99, 6,44 (*AB*, J = 16, H-C(7), H-C(8)). CI-MS: 281 (23, $[M + 1]^+$), 263 (100), 231 (9), 207 (6), 185 (8), 155 (11), 127 (20).

4. (+)-(1'S,4'S)- und (+)-(1'S,4'R)-5-(4'-Acetoxy-1'-hydroxy-2',6',6'-trimethylcyclohex-2-enyl)-3-methylpenta-2',4'-diensäure-methylester (11 und 12). Aus 120 mg 9 wurde mit Pyridin/Ac₂O durch Stehen bei RT. während 26 h 11 hergestellt. Reinigung durch Chromatographie an Kieselgel mit Hexan/Et₂O 3:2. Umkristallisation aus Et₂O/Hexan: 77 mg farblose Kuben. Schmp. 92–93'. $[\alpha]_{D}^{22} = + 226,8 (c = 1,465, CHCl_3). UV (Et₂O): 262 (26500). CD (Et₂O, RT.): 212 (0), 256 (+ 16,3), 296 (0). ¹H-NMR (400 MHz, CDCl_3): 0.92, 1,07 (2 s, CH₃--C(1)); 1,59 (br. s, OH); 1,65 (dd, <math>^{4}J = 1,7, ^{5}J = 1,7, CH_{3}(18)); 1,67 (dd, ^{2}J = 13,5, ^{3}J = 9,5, H_{ax}$ -C(2)); 1,85 (ddd, $^{2}J = 13,5, ^{3}J = 6,6, ^{4}J = 1,5, H_{eq}$ -C(2)); 2,07 (Ac); 2,30 (d, $^{4}J = 1,2, CH_{3}(19)); 3,72 (CH₃O); 5,37 (m, ^{3}J = 9,5, ^{3}J = 6,6, ^{5}J = 1,7, H-C(3)); 5,53 (m, ^{4}J = 1,7, 1,5, H-C(4)); 5,84 (m, ^{4}J = 1,2, H-C(10)); 6,13, 6,33 (AB, J = 16, H-C(7), H-C(8)^{12}). ^{13}C-NMR (50 MHz, CDCl_3): 14,0 (CH₃(19)); 17,8 (CH₃(18)); 21,3 (Ac); 22,3, 24,8 (CH₃-C(1)); 39,6 (C2), C(1)); 51,0 (CH₃O); 68,7 (C(3)); 78,8 (CO). CI-MS: 305 (7, <math>(M + 1 - H_2O]^+), 277 (3), 263 (100), 245 (4), 231 (12). Anal. ber. für C₁₈H₂₆O₅ (322,41): C 67,06, H 8,13; gef.: C 66,83, H 8,38.$

Aus 52 mg **10** wurden wie vorstehend bei **9** 46 mg **12** als blassgelbes Öl erhalten. $[\alpha]_{D2}^{D2} = +215, 5 (c = 1,860, CHCl_3)$. UV (Et₂O): 261 (23700). CD (Et₂O, RT.): 213 (0), 257 (+9,5), 310 (0). IR (CHCl₃): 3590w, 2960m, 2940m, 2860m, 1710s, 1610m, 1430m, 1370m, 1240s, 1160s, 1020m, 970m. ¹H-NMR (400 MHz, CDCl₃): 0,96, 1,01 (2 s, CH₃-C(1)); 1,65 (br. *s*, OH); 1,67 (*dd*, ⁴*J* = 1,6, ⁵*J* = 1,6, CH₃(18)); 1,73 (*dd*, ²*J* = 14,1, ³*J* = 6,3, H-C(2)); 1,85 (*dd*, ²*J* = 14,1, ³*J* = 6,1, H-C(2)); 2,05 (Ac); 2,28 (*d*, ⁴*J* = 1,2, CH₃(19)); 3,71 (CH₃O); 5,30 (*m*, ³*J* = 6,3, 6,1, ⁵*J* = 1,6, H-C(3)); 5,58 (*m*, ⁴*J* = 1,6, H-C(4)); 5,82 (*m*, ⁴*J* = 1,2, H-C(10)); 6,01, 6,39 (*AB*, *J* = 16, H-C(7), H-C(8)). ¹³C-NMR (50 MHz, CDCl₃): 14,0 (CH₃(19)); 18,9 (CH₃(18)); 21,3 (Ac); 23,4, 24,3 (CH₃-C(1)); 37,8 (C(1)); 38,4 (C(2)); 51,0 (CH₃O); 67,7 (C(3)); 77,8 (C(6)): 119,1 (C100); 123,2 (C(4)); 133,4 (C(7)); 136,6 (C(8)); 140,6 (C(5)); 151,4 (C(9)); 167,4 (C(11)); 170,7 (CO). EI-MS: 322 (2, *M*⁺), 304 (1), 290 (3), 262 (12), 230 (13), 219 (26), (26) (51), 192 (30), 174 (100), 146 (72), 125 (49). Anal. ber. für C₁₈H₂₆O₅ (322,41): C 67,06, H 8,13; gef.: C 67,31, H 8,38.

5. (-)-(1'S,2'R)-5-(1',2-Epoxy-4',4'-(ethylendioxy)-2',6',6'-trimethylcyclohexyl)-3-methylpenta-2,4-diennitril (6). Die Lsg. von 21,6 g C₅-Nitrilophosphonat [23] in 250 ml THF wurde unter N₂ bei 0° mit 5,6 g t-BuOK versetzt. Nach 15 min Rühren bei 0° wurden 7,5 g 4 in 10 ml THF zugetropft. Man liess auf RT. kommen und rührte 12 h. Dann Abdestillieren des Lsgm. i.V., Aufnehmen des Rückstandes in Et₂O, Auswaschen mit H₂O, Abtrennen der Et₂O-Phase, Neutralisation der H₂O-Phase (pH 6) und erneute Extraktion mit Et₂O. Vereinigte Et₂O-Phasen mit NaHCO₃-Lsg. waschen, trocknen (MgSO₄), Eindampfen, Chromatographieren des Rückstands an Kieselgel mit Hexan/Et₂O 7:2, Kugelrohr-Destillation der erhaltenen Hauptfraktion bei 150°/0,03 Torr: 9,3 g (98%) 6 als farbloses Öl, das bei 0° allmählich wachsartig erstarte. $[\alpha]_{D}^{21} = -58.9$ (c = 0.951, CHCl₃). UV (Et₂O): 259 (29100). CD (Et₂O, RT.): 255 (-4), 300 (0). IR (CHCl₃): 2990m, 2950s, 2920m, 2870m, 2210s, 1720w, 1635m, 1590m, 1460m, 1445m, 1380m, 1360m, 1130s, 1080s, 970s, 900m. ¹H-NMR (200 MHz, CDCl₃): 0,95, 1,17 (2 s, $CH_3-C(1)$; 1.26 (s, $CH_3(18)$); 2.18 (d, J = 1, $CH_3(19)$); 3.92 (m, CH_2CH_2); 5.25 (d, J = 1, H-C(10)); 6.35 (s, H-C(7), H-C(8)). ¹³C-NMR (CDCl₃, 50 MHz): 16,7 (CH₃(19)); 21,0 (CH₃(18)); 25,9, 27,4 (CH₃(16), CH₃(17)); 35,1 (C(1)); 41,0 (C-(2)*); 42,3 (C(4)*); 63,6, 64,1 (CH₂CH₂); 65,1 (C(5)); 70,5 (C(6)); 98,4 (C(10)); 106,8 (C(3)); 117,4 (C(11)); 132,8 (C(7)*); 133,6 (C(8)*); 155,5 (C(9)). EI-MS: 289 (5, M^+), 203 (100), 188 (41), 176 (16), 160 (44), 146 (61), 133 (54), 119 (23), 110 (22). Anal. ber. für C₁₇H₂₃NO₃ (289,38): C 70,56, H 8,01, N 4,84; gef.: C 70,73, H 8,14, N 5,10.

6. (+)-('S)-5-(1'-Hydroxy-2',6',6'-trimethyl-4'-oxocyclohex-2'-enyl)-3-methylpenta-2,4-diennitril (8). Nach Zugabe von 616 mg TsOH · H₂O zur Lsg. in 9,4 g 6 in 150 ml Aceton wurde 25 h bei RT. gerührt. Dann Zugabe von gepulvertem K₂CO₃ und erneutes Rühren während 0,5 h. Eindampfen i. V., Zugabe von Et₂O, Auswaschen mit halbkonz. NaHCO₃, Extrahieren mit Et₂O, Waschen der Et₂O-Extrakte mit ges. NaCl-Lsg., Trocknen (MgSO₄), Eindampfen, Chromatographie des Rückstands an Kieselgel mit Hexan/Et₂O 1:1. 7,54 g 8 als farblose Kristalle.

¹²) Zuordnung gemäss NOE-Experimenten. Die in [44] getroffene Zordnung bei analogen C(6)-hydroxylierten α -lonon-Derivaten muss offensichtlich umgekehrt werden: H–C(8) absorbiert bei tieferem Feld.

Umkristallisieren aus Et₂O: farblose Nadeln. Schmp. $85,5-86,5^{\circ}$. [α]₀²¹ = + 424,7 (c = 0,956, CHCl₃). UV (Et₂O): 259,5 (30000). CD (Et₂O, RT.): 228 (-38,9), 240 (0), 261 (+50,5), 295 (0). IR (CHCl₃): 3590w, 3450w (br.), 2990m, 2960m, 2860w, 2210s, 1660s, 1620m, 1590m, 1430m, 1390m, 1370m, 1110m, 970m. ¹H-NMR (200 MHz, CDCl₃): 1,01, 1,11 (2 s, CH₃-C(1)); 1,89 (d, J = 1,3, CH₃(18)); 1,99 (s, OH); 2,17 (d, J = 1, CH₃(19)); 2,31 (d, J = 17,2, H–C(2)); 2,46 (d, J = 17,2, H–C(2)); 5,31 (s, H–C(10)); 5,95 (m, H–C(4)); 6,13, 6,51, (*AB*, J = 16, H–C(7), H–C(8)). ¹³C-NMR (50 MHz, CDCl₃): 16,9 (CH₃(19)); 18,8 (CH₃(18)); 23,0 (CH₃(16)*); 24,3 (CH₃(17)*); 42,0 (C(1)); 49,6 (C(2)); 79,4 (C(6)); 99,3 (C(10)); 117,1 (C(11)); 127,3 (C(7)*); 131,0 (C(8)*); 136,8 (C(4)); 155,5 (C(9)); 161,5 (C(5)); 197,3 (C(3)). EI-MS: 245 (4, M^{++}), 202 (3), 190 (11), 189 (83), 188 (4), 174 (4), 172 (14), 171 (100), 161 (23), 149 (43), 143 (33). Anal. ber. für C₁₅H₁₉NO₂ (245,32): C 73,44, H 7,81, N 5,71; gef.: C 73,38, H 7,69, N 5,67.

7. (+)-(1'S,4'S)- und (+)-(1'S,4'R)-5-(1',4'-Dihydroxy-2',6',6'-trimethylcyclohex-2'-enyl)-3-methylpenta-2,4-diennitril (13 und 14). Unter Ar und bei 0° wurden 7,54 g 8 in 500 ml THF mit 15,75 g 9-BBN versetzt und wiein*Exper. 3*weiterverarbeitet. Chromatographie an Kieselgel: 3,94 g 13, 2,79 g 14 und 0,8 g Mischfraktion.

Daten von **13**. Glasiger Schaum. $[\alpha]_{D}^{21} = +315,7$ (c = 1,008, CHCl₃). UV (Et₂O): 258,5 (22400). CD (Et₂O, RT.): 217 (0), 262 (+15,2), 297 (0). IR (CHCl₃): 3580*m*, 3430*m* (br.), 2960*s*, 2920*s*, 2860*m*, 2210*s*, 1630*m*, 1590*m*, 1440*m*, 1380*m*, 1100*s*, 970*s*, 830*m*. ¹H-NMR (200 MHz, CDCl₃): 0,90, 1,03 (2 s, CH₃--C(1)); 1,63 (*m*, CH₃(18)); 2,8 (br. *s*, 2 OH); 2,16 (*d*, J = 1, CH₃(19)); 4,30 (*m*, H-C(3)); 5,26 (*s*, H-C((10)); 5,60 (br. *s*, H-C(4)); 6,13, 6,40 (*AB*, J = 16, H-C(7), H-C(8)). ¹³C-NMR (50 MHz, CDCl₃): 16,9 (CH₃(19)); 17,5 (CH₃(18)); 22,4 (CH₃(16)*); 25,0 (CH₃(17)*); 39,8 (C(1)); 44,0 (C(2)); 65,4 (C(3)); 79,0 (C(6)); 98,0 (C(10)); 117,5 (C(11)); 128,2 (C(4)); 129,7 (C(7)); 137,6 (C(5)); 140,1 (C(8)); 156,3 (C(9)). EI-MS: 247 (16, M^{++}), 230 (100), 212 (8), 207 (17), 202 (30), 191 (6), 186 (5), 173 (12), 149 (16), 146 (10).

Daten von **14**. Blassgelbe Kristalle aus Et₂O. Schmp. 143–145°. $[\alpha]_{D}^{20} = + 189, 4$ (c = 0,942, CHCl₃). UV (Et₂O): 257 (28000). IR (CHCl₃): 3600*m*, 3450*w* (br.), 2960*s*, 2920*m*, 2860*m*, 2210*s*, 1635*w*, 1590*m*, 1440*m*, 1385*m*, 1110*m*, 1090*m*, 980*m*. ¹H-NMR (200 MHz, CDCl₃): 0,94, 0,99 (2 *s*, CH₃–C(1)); 1,65 (*m*, CH₃(18)); 2,16 (*d*, J = 1, CH₃(19)); 4,27 (*m*, H–C(3)); 5,26 (*s*, H–C(10)); 5,66 (br. *s*, H–C(4)); 6,01, 6,50 (*AB*, J = 16, H–C(7), H–C(8)). ¹³C-NMR (50 MHz, CDCl₃): 16,8 (CH₃(19)); 19,2 (CH₃(18)); 24,1 (CH₃(16)*); 24,3 (CH₃(17)*); 38,4 (C(1)); 41,8 (C(2)); 64,8 (C(3)); 77,0 (C(6)); 97,5 (C(10)); 117,5 (C(11)); 128,0 (C(4)); 130,3 (C(7)); 137,2 (C(5)); 139,0 (C(8)); 156,1 (C(9)). EI-MS: 247 (3, M^{+1} , 229 (8), 201 (19), 191 (44), 186 (34), 173 (58), 158 (80), 146 (65), 130 (29). Anal. ber. für C₁₅H₂₁NO₂ (247,34): C 72,84, H 8,56, N 5,66; gef.: C 72,72, H 8,71, N 5,75.

8. (+)-(1S,4S)-Essigsäure-[4-hydroxy-4-(4-cyano-3-methylbuta-1,3-dienyl)-3,5,5-trimethylcyclohex-2-enyl]ester (15). Die Acetylierung von 3,94 g 13 in 20 ml Pyridin und 3,31 ml Ac₂O wurde wie in *Exper.* 4 durchgeführt. Aufarbeitung durch Eindampfen i. V., Extraktion mit Et₂O, Waschen mit verd. CuSO₄-Lsg. und ges. NaCl-Lsg., Trocknen (MgSO₄), Chromatographie an Kieselgel (Hexan/Et₂O 3:2): 4,1 g (88%) gelbliches Öl. Farblose Kristalle aus Et₂O/Hexan. Schmp. 106–108°. [α]²D¹ = +242,9 (*c* = 1,102, CHCl₃). UV (Et₂O): 258 (29100). CD (Et₂O, RT.): 215 (0), 255 (+19,2), 300 (0). IR (CHCl₃): 3600m, 3500w (br.), 2970s, 2930m, 2880m, 2215s, 1730s, 1640m, 1590m, 1440m, 1380s, 1250s, 1110s, 1020s, 970s. ¹H-NMR (400 MHz, CDCl₃): 0,91, 1,07 (2 s, CH₃-C(1)); 1,61 (br. s, OH); 1,64 (dd, ⁴J = 1,7, ⁵J = 1,7, CH₃(I8)); 1,66 (dd, ²J = 13,5, ³J = 9,5, H_{ax}-C(2)); 1,88 (ddd, ²J = 13,5, ³J = 6,6, ⁴J = 1,5, H_{eq}-C(2)); 2,07 (Ac); 2,17 (d, ⁴J = 0,9, CH₃(19)); 5,27 (m, ⁴H = 0,9, H-C(10)); 5,36 (m, ³J = 9,5, 6,6, ⁵J = 1,7, H-C(3)); 5,54 (m, ⁴J = 1,7, 1,5, H-C(4)); 6,12, 6,41 (*AB*, J = 16, H-C(7), H-C(8)). ¹³C-NMR (50 MHz, CDCl₃): 16,9 (CH₃(19)); 17,7 (CH₃(8)); 21,3 (Ac); 22,4 (CH₃(16)*); 24,9 (CH₃(17)*); 39,7 (C(2), C(1)); 68,6 (C(3)); 78,6 (C(6)); 98,2 (C(10)); 117,4 (C(11))); 123,8 (C(4)); 129,9 (C(7)); 139,6 (C(8)); 139,8 (C(5)); 156,2 (C(9)); 170,7 (Ac). CI-MS: 290 (7, [M + 1]⁺), 272 (27), 230 (100), 212 (7), 201 (23), 186 (8), 172 (14), 159 (9), 145 (5). Anal. ber. für C₁₇H₂₃NO₃ (289,38): C 70,56 H 8,01, N 4,84; gef: C 70,30, H 8,27, N 4,90.

9. $(+) - (1S, 4R) - Essigsäure - [4 - hydroxy - 4 - (4 - cyano - 3 - methylbuta - 1,3 - dienyl) - 3,5,5 - trimethylcyclohex - 2-enyl]ester (16). Wie in Exper. 8 beschrieben, wurde aus 1,5 g 14 das 16 hergestellt: 1,62 g. Schmp. 128,5 - 130,5°. [x]_D^{21} = + 279,4 (c = 0,840, CHCl_3). UV (Et_2O): 258 (29100). CD (Et_2O, RT.): 213 (0), 254 (+ 14,0), 295 (0). IR (CDCl_3): 3610w, 3500w (br.), 3010m, 2970m, 2880w, 2210s, 1730s, 1640w, 1590m, 1440m, 1370m, 1250s, 1020m, 980m, 950m. ¹H-NMR (400 MHz, CDCl_3): 0,96, 1,00 (2 s, CH₃-C(1)): 1,62 (br. s, OH); 1,66 (dd, ⁴J = 1,6, ⁵J = 1,6, CH₃(18)); 1,73 (dd, ²J = 14,1, ³J = 6,2, H_{ax}-C(2)*); 1,84 (dd, ²J = 14,1, ³J = 6,3, H_{eq}-C(2)*); 2,05 (s, Ac); 2,16 (d, ⁴J = 0,9, CH₃(19)); 5,27 (m, H-C(10)); 5,30 (m, ³J = 6,3, 6,2, 3,1, ⁵J = 1,8, H-C(3)); 5,59 (m, ³J = 3, 1, ⁵J = 1,5, H-C(4)); 6,01, 6,47 (AB, J = 16, H-C(7), H-C(8)). ¹³C-NMR (50 MHz, CDCl_3): 16,8 (CH₃(19)); 18,6 (CH₃(18)); 21,3 (Ac); 23,9 (CH₃(16)*); 24,3 (CH₃(17)*); 37,8 (C(1)); 38,4 (C(2)); 67,5 (C(3)); ca. 77 (C(6)); 98,1 (C(10)); 117,5 (C(11)); 123,6 (C(4)); 130,4 (C(7)); 138,6 (CR)); 140,1 (C(5)); 156,0 (C(9)); 170,6 (Ac). CI-MS: 290 (22, [A + 1]⁺), 272 (10), 230 (100), 212 (18), 202 (27), 186 (5), 172 (21), 158 (13), 146 (10). Anal. ber. für C₁₇H₂₃NO₃ (289,38): C 70,56, H 8,01, N 4,84; gef.: C 70,53, H 8,07, N 4,85.$

10. Röntgenstrukturanalyse von 11¹³). Farblose Kuben aus Hexan/Et₂O; Formel in der asymmetrischen Einheit C₁₈H₂₆O₅; Formelgewicht 322,41; Raumgruppe P2₁ (monoklin); Gitterkonstanten (aus 64 Reflexen): a = 12,354(2) Å, b = 10,080(1) Å, c = 15,800(2) Å, V = 1791,1(6) Å³, Z = 4, ber. Dichte 1,195 g/cm³. Die Intensitäten von 5698 symmetrieunabhängigen Reflexen wurden mit MoK_a-Strahlung (Graphit-Monochromator) auf einem Nicolet-R3-Vierkreisdiffraktometer mit Tieftemp.-Zusatz LT-1 bei ca. -140° im Wykoff- ω -scan-Modus gemessen (Absorptionskorrektur). Die Strukturaufklärung durch direkte Methoden und die Verfeinerungen erfolgten mit dem SHELXTL-Programm Version 5.1 [45]. Atom-Koordinaten, Bindungslängen und -winkel können beim Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England, angefordert werden.

11. (3' RS,4' S)-5-(3',4'-Diacetoxy-2',6',6'-trimethylcyclohex-1'-enyl)-3-methylpenta-2,4-diensäure-methylester (17/18). Ester 11 (19,5 mg) in 1 ml AcOH/Ac₂O 9:1 wurde mit 1 Tropfen H₂SO₄ conc. versetzt., Nach 5 min Stehen wurde mit etwas verd. NaOH neutralisiert, dann mit Et₂O verdünnt und mit H₂O ausgewaschen. Nach üblicher Aufarbeitung wurden 22 mg Rohprodukt erhalten, das durch Chromatographie an Kieselgel mit Hexan/ Et₂O 1:1 und einer Spur MeOH 19 mg Gemisch 17/18 als Öl ergab. UV (Et₂O): 274 (qual.). ¹H-NMR (200 MHz, CDCl₃): 1,07, 1,10, 1,13, 1,15 (4 s, CH₃-C(1)); 1,62, 1,70 (2 s, CH₃(18)); 2,00, 2,03 (2 s, Ac-C(3)); 2,09, 2,12 (2 s, Ac-C(4)); 2,33 (s, CH₃(19)); 3,72 (s, CH₃O); 5,13 (m, H-C(3)); 5,51 (br. s, H-C(4)); 5,79 (br. s, H-C(10)); 6,11, 6,44 (AB, J = 16, H-C(8), H-C(7)).

12. (3' R, 4'S)- und (3'S, 4'S)-5-(3', 4'-Dihydroxy-2', 6', 6'-trimethylcyclohex-1'-enyl)-3-methylpenta-2,4-diensäure-methylester (19 und 20). Gemisch 17/18 (19 mg) wurde in wenig MeOH/H₂O 9:1 gelöst und mit 16 mg K₂CO₃ versetzt und 1 h bei RT. gerührt. Darauf Verdünnen mit H₂O und Extrahieren mit AcOEt. Die H₂O-Phase wurde mit NaCl gesättigt und erneut mit AcOEt extrahiert. Die vereinigten AcOEt-Phasen wurden mit Sole gewaschen, getrocknet (MgSO₄). Nach Eindampfen wurde 19/20 an Kieselgel mit CH₂Cl₂/MeOH 19:1 chromatographiert: 5,2 mg (36%) 19, 5,8 mg (40%) 20 und 1,7 mg Mischfraktion. Zur Abtrennung von (9Z)-Isomeren wurde anschliessend durch semipräp. HPLC an *LiChrosorb SI 60* (7 μ , 25 × 250 mm) mit CH₂Cl₂/Hexan 7:3 + 2% EtOH gereinigt.

Daten von **19**. Farbloses Öl. UV (Et₂O): 278 (14800). CD (Et₂O): 217 (-2,6), 231 (0), 247 (+0,9), 270 (-0,3), 310 (0), 322 (-0,1), 330 (0). IR (CHCl₃): 3560w, 3400w (br.), 2960s, 2920s, 2860m, 1710s, 1610s, 1430m, 1360s, 1230s, 1160s, 1050s, 970s. ¹H-NMR (400 MHz, CDCl₃): 1,06, 1,09 (2 s, CH₃-C(1)); 1,57 (*ddd*, ²J = 12, ³J = 4, ⁴J = 1, H_{eq}-C(2)); *ca*. 1,57 (br. *s*, OH); 1,71 (*dd*, ²J = 12, ³J = 12,5, H_{ax}-C(2)); 1,87 (*d*, J = 1, CH₃(18)); *ca*. 2,10 (br. *s*, OH); 2,33 (*d*, J = 1, CH₃(19)); 3,73 (CH₃O); 3,88 (*ddd*, ³J = 12,5, 4, 4, H-C(3)); 3,97 (br. *d*, ³J = 4, H-C(4)); 5,78 (br. *s*, H-C(10)); 6,12, 6,48 (*AB*, J = 16, H-C(8), H-C(7)). CI-MS: 281 (25, $[M + 1]^{+-}$); 277 (9), 263 (100), 251 (9), 245 (7), 231 (4), 205 (8), 89 (17).

Daten von **20**. Farbloses Öl. UV (Et₂O): 260,5 (12600), 286 (12700). CD (Et₂O): 217 (0), 223 (+1,1), 258 (0), 285 (-2,0), 350 (0). IR (CHCl₃): 3580w, 3400w (br.), 2950s, 2920s, 2850m, 1710s, 1610s, 1430m, 1355m, 1230s, 1160s, 1060s, 1010s, 970m. ¹H-NMR (400 MHz, CDCl₃): 1,07, 1,10 (2 s, CH₃-C(1)); 1,60 (dd, ²J = 12,5, ³J = 12, H_{ax}-C(2)); *ca.* 1,60 (br. *s*, OH); 1,77 (dd, ²J = 12,5, ³J = 4, H_{eq}-C(2)); 1,79 (CH₃-C(18)); *ca.* 2,10 (br. *s*, OH); 2,33 (CH₃(19)); 3,73 (CH₃O); 3,80 (ddd, ³J = 12, 8, 4, H-C(3)); 3,94 (br. *d*, ³J = 8, H-C(4)); 5,77 (br. *s*, H-C(10)); 6,11, 6,47 (*AB*, *J* = 16, H-C(8), H-C(7)). EI-MS: 280 (19, M^{++}), 262 (1), 248 (19), 233 (13), 251 (24), 203 (19), 187 (34), 173 (39), 159 (46), 147 (46), 125 (57), 119 (53).

13. (*I*'RS,6'S)-*Essigsäure-[6'-acetoxy-3'-(4"-cyano-3"-methylbuta-1",3"-dienyl)-2',4',4'-trimethylcyclohex-2'-enyl]ester* (**21/22**). Die Lsg. von 4,06 g **15** in 150 ml AcOH/Ac₂O 9:1 wurde mit 27 Tropfen conc. H₂SO₄ versetzt. Nach 15 min wurde i. V. eingeengt, die verbleibende Lsg. mit 2N NaOH neutralisiert, dann mit NaCl gesättigt und mit Et₂O erschöpfend extrahiert. Nach üblicher Aufarbeitung blieben 4,20 g Gemisch **21/22**. Eine Probe wurde bei 0,03 Torr/175–185° destilliert (Kugelrohr): blassgelbes, zähflüssiges Öl. UV (Et₂O): 272 (15300). IR (CHCl₃): 2960m, 2930m, 2870w, 2210s, 1740s, 1590w, 1370s, 1230s, 1040s, 1020s, 970m. ¹H-NMR (200 MHz, CDCl₃): 1,07, 1,11, 1,13, 1,16 (4 s, CH₃-C(1)); 1,62, 1,70 (CH₃(18)); 2,00, 2,03, 2,09, 2,12 (Ac); 2,21 (CH₃(19)); 5,12 (m, H-C(3)); 5,24 (br. s, H-C(4)); 5,48 (m, H-C(10)); 6,17, 6,48 (*AB*, *J* = 16, H-C(8), H-C(7)). ¹³C-NMR (50 MHz, CDCl₃): 16,5, 16,7 (CH₃(19)); 19,1, 19,2 (CH₃(18)); 20,9, 21,0, 21,1 (Ac); 27,3, 27,8, 29,6 (CH₃-C(1)); 36,5, 36,9 (C(1)); 7,8, 41,2 (C(2)); 6,7, 70,4 (C(3)); 70,0, 74,9 (C(4)); 98,3, 98,4 (C(10)); 117,4 (C(11)); 126,1, 127,0 (C(5)); 1332, (7, 14, + 1]⁺), 272 (100), 256 (8), 230 (20), 212 (57), 172 (9), 136 (7). Anal. ber. für C₁₉H₂₅NO₄ (331,42): C 68,86, H 7,60, N 4,23; gef.: C 68,83 H 7,83, N 4,22.

¹³) Röntgenstrukturanalyse ausgeführt von Dr. R. Prewo.

14. (-)-(3' R,4' S)- und (-)-(3' S,4' S)-5-(3',4'-Dihydroxy-2',6',6'-trimethylcyclohex-1'-enyl)-3-methylpenta-2,4-diennitril (**23** und **24**). Die Verseifung von **21/22** wurde wie in *Exper. 12* vorgenommen. Ansatz 4,20 g Gemisch, 240 ml MeOH/H₂O 9:1, 3,50 g K₂CO₃: 3,69 g **23/24**. Mehrfach durchgeführte Chromatographie an Kieselgel gab 1,96 g (62%) **23**, 0,97 g (31%) **24** und 0,11 g (4%) Mischfraktion.

Daten von **23**. Aus Et₂O farblose verfilzte Nadeln. Schmp. 108–110°. $[\alpha]_D^{21} = -38, 4$ (c = 1,030, CHCl₃). UV (Et₂O): 257 (14400), 280 (13000, sh). CD (Et₂O, RT.): 208 (0), 215 (−2,6), 229 (0), 240 (+0,6), 253 (0), 273 (−0,3), 285 (0), 292 (+0,1), 300 (0), 318 (−0,2), 340 (0). IR (CHCl₃): 3560*m*, 3400*w* (br.), 2960*s*, 2930*s*, 2860*m*, 2220*s*, 1620*w*, 1590*m*, 1445*m*, 1385*m*, 1110*s*, 1060*s*, 970*s*. ¹H-NMR (200 MHz, CDCl₃): 1,06, 1,08 (2 *s*, CH₃−C(1)); 1,58 (ddd, ²*J* = 12,5, ³*J* = 4,5, ⁴*J* = 1, H_{eq}−C(2)); 1,73 (dd, ²*J* = 12,5, ³*J* = 12, H_{ax}−C(2)); 1,87 (dd, *J* = 1, CH₃(18)); 2,00 (br. *s*, 2 OH); 2,21 (d, *J* = 1, CH₃(18)); 3,88 (ddd, ³*J* = 12, 4,5, 4,1, H−C(3)); 3,97 (dd, ³*J* = 4,1, ⁴*J* = 1, H−C(4)); 5,21 (d, *J* = 1, CH₃(18)); 3,96 (C(1)); 41,0 (C(2)); 66,5 (C(3)); 71,2 (C(4)); 97,8 (C(10)); 117,5 (C(11)); 129,7 (C(5)); 134,1 (C(7)*); 134,3 (C(8)*); 141,1 (C(6)); 156,6 (C(9)). CI-MS: 304 (39, [*M* + 57]⁺⁺), 248 (47, [*M* + 1]⁺⁺), 230 (100), 214 (7), 172 (17), 113 (2). Anal. ber. für C₁₃H₂₁NO₂ (247,34): C 72,84, H 8,56, N 5,66; gef.: C 72,58, H 8,61, N 5,60.

Daten von **24**. Farblose Kristalle. Schmp. 93,5–94,5°. $[\alpha]_{D}^{21} = -155,0$ (c = 0,995, CHCl₃). UV (Et₂O): 252 (12 600) 287,5 (9600). CD (Et₂O, RT.): 218 (0), 225 (+1,1), 250 (0), 292 (-1,5), 348 (0). IR (CHCl₃): 3580*m*, 3440*w* (br.), 2960*s*, 2930*s*, 2860*m*, 2210*s*, 1620*w*, 1590*m*, 1440*m*, 1380*m*, 1060*s*, 1020*s*, 970*s*. ¹H-NMR (CDCl₃, 200 MHz): 1,07, 1,10 (2 *s*, CH₃–C(1)); 1,59 (*dd*, ²*J* = 12,5 ³*J* = 12, H_{ax}–C(2)); 1,77 (*dd*, ²*J* = 12,5 ³*J* = 4, H_{eq}–C(2)); 1,79 (*d*, *J* = 1, CH₃(18)); 2,1 (br. *s*, 2 OH); 2,21 (*d*, *J* = 1, CH₃(19)); 3,79 (*dd*, ³*J* = 12, 8, 4, H–C(3)); 3,94 (br. *d*, ³*J* = 8, H–C(4)); 5,21 (*d*, *J* = 1, H–C(10)); 6,15, 6,46 (*AB*, *J* = 16, H–C(8), H–C(7)). ¹³C-NMR (50 MHz, CDCl₃): 16,3 (CH₃(19)); 16,5 (CH₃(18)); 2,79, 30,0 (CH₃–C(1)); 36,7 (C(1)); 44,4 (C(2)); 70,2 (C(3)); 77,2 (C(4)); 97,3 (C(10)); 17,4 (C(11)); 131,0 (C(5)); 134,1 (C(7)*); 134,2 (C(8)*); 138,7 (C(8)); 156,1 (C(9)). CI-MS: 304 (44, [*M* + 57]⁺⁺), 248 (87, [*M* + 1]⁺), 230 (100), 172 (14), 113 (1). Anal. ber. für C₁₅H₂₁NO₂ (247,34): C 72,84, H 8,56, N 5,66; gef.: C 72,99, H 8,57, N 5,58.

15. (+)-(3'S,4'R)- und (+)-(,3'R,4'R)-5-(3',4'-Dihydroxy-2',6',6'-trimethylcyclohex-1'-enyl)-3-methylpenta-2,4-diennitril (ent-23 und ent-24). Aus 1,22 g 16 wurde analog*Exper. 13*und 14 die Verbindungen ent-23 undent-24 hergestellt; Ausbeuten 70% bzw. 15%.

 $(-)-(3' R,4' S)-5-\{3',4'-Bis[(trimethylsilyl)oxy]-2',6',6'-trimethylcyclohex-1'-enyl\}-3-methylpenta-2,4-interval (interval ($ 16. diennitril (25). Die Lsg. von 1,90 g 23 in 25 ml Pyridin wurde mit 1,60 ml Hexamethyldisilazan und 2,14 ml Me₃SiCl versetzt und 45 min unter N₂ bei RT. gerührt. Anschliessend Eindampfen i.V., Verdünnen des Rückstands mit Et₂O, Waschen mit halbges. wässr. CuSO₄-Lsg., ges. NaCl-Lsg., Trocknen (MgSO₄), Eindampfen gab 2,98 g (99%) blassgelbliche Kristalle. Nach Umkristallisation aus Et₂O: farblose, büschelige Nädelchen. Schmp. 97,0- $98,0^{\circ}$. [α]²_D = -75,9 (c = 0,943, CHCl₃). UV (Et₂O): 260 (16100 sh), 285 (17100). CD (Et₂O, RT.): 220 (-1,9), 228 (0), 245 (+1,9), 272 (0), 320 (-0,4), 336 (0). IR (CHCl₃): 2960s, 2900s, 2210s, 1620w, 1580w, 1440w, 1390w, 1360m, 1250s, 1120m, 1090s, 1050s, 960m, 890s, 860s, 840s. ¹H-NMR (200 MHz, CDCl₃): 0,15, 0,16 (2 s, CH₃Si); 1,04, 1,05 $(2 s, CH_3-C(1)); 1,27 (ddd, {}^2J = 12, {}^3J = 3, {}^4J = 1, H_{eq}-C(2)); 1,75 (d, J = 1, CH_3(18)); 1,95 (dd, {}^2J = 12, {}^3J = 12$ $H_{ax} - C(2)$; 2,19 (d, J = 1, $CH_3(19)$); 3,77 (ddd, ${}^{3}J = 12$, 3, 3, H - C(3)); 3,83 (dd, ${}^{3}J = 3$, ${}^{4}J = 1$, H - C(4)); 5,19 (d, $J = 1, CH_3(19)$); 5,19 (d, J = 1, CH_3(19)); 5,19 (d, J = 1, CH_3(19)); 5,19 (d, J = 1, J = 1, H-C(10); 6,15, 6,49 (AB, J = 16, H-C(8), H-C(7)).¹³C-NMR (50 MHz, CDCl₃): 0,2, 1,0 (CH₃Si); 16,5 (CH₃(19)); 19,7 (CH₃(18)); 27,5, 29,8 (CH₃-C(1)); 37,2 (C(1)); 41,0 (C(2)); 68,1 (C(3)); 73,7 (C(4)); 97,3 (C(10)); 117,7 (C(11)); 131,4 (C(5)); 133,9 (C(7)*); 134,9 (C(8)*); 138,9 (C(6)); 156,7 (C(9)). EI-MS: 391 (30, M⁺), 376 (20), 347 (12), 286 (6), 275 (92), 260 (73), 232 (8), 217 (18), 209 (11), 147 (39), 133 (13), 73 (100). Anal. ber. für C₂₁H₃₇NO₂Si₂ (391,71): C 64,39, H 9,52, N 3,58; gef.: C 64,41, H 9,43, N 3,41.

17. (-)-(3' S, 4' S)-5- $\{3', 4'-Bis[$ (trimethylsilyl) oxy]-2', 6', 6'-trimethylcyclohex-1'-enyl $\}$ -3-methylpenta-2,4diennitril (**26**). Entsprechend *Exper. 16* wurden aus 0,9 g **24** nach Destillation bei 155–160° (0,04 Torr, Kugelrohr) 1,40 g (98%) **26** erhalten. Blassgelbes ÖL $[\alpha]_D^{21} = -56,3 (c = 1,098, CHCl_3). UV (Et_2O): 254 (15 800), 289 (15 200).$ $CD (Et_2O, RT.): 217 (0), 226 (+2,2), 254 (0), 288 (-2,8), 337 (0), 350 (+0,1). IR (CHCl_3): 2960s, 2900m, 2860m,$ 2210s, 1620w, 1590m, 1440m, 1390m, 1260s, 1250s, 1180m, 1160m, 1090s, 1070s, 1040m, 970m, 900s, 880s, 870s, $840s. ¹H-NMR (200 MHz, CDCl_3): 0,16, 0,18 (CH_3Si); 1,03, 1,07 (2 s, CH₃-C(1)); 1,69 ($ *s*, CH₃(18)); 2,19(CH₃(19)); 3,77 (*ddd*, ³J = 12, 7, 4, H-C(3)); 3,94 (br.*d*, ³J = 7, H-C(4)); 5,17 br.*s*, H-C(10)); 6,14, 6,46 (*AB*,*J*= 16, H-C(8), H-C(7)). ¹³C-NMR (50 MHz, CDCl₃): 0,7, 0,9 (CH₃Si); 16,5 (CH₃(19)); 180, (CH₃(18)); 28,1,30,2 (CH₃-C(1)); 36,6 (C(1)); 45,4 (C(2)); 71,3 (C(3)); 78,2 (C(4)); 97,4 (C(10)); 117,7 (C(11)); 132,0 (C(5)); 134,3(C(7)*); 134,7 (C(8)*); 138,5 (C(6)); 156,7 (C(9)). E1-MS: 391 (16, M⁺⁺), 376 (4), 348 (7), 275 (58), 260 (45), 217(19), 209 (7), 197 (7), 191 (7), 155 (43), 147 (15), 91 (100), 73 (81). Anal. ber. für C₂₁H₃₇NO₂Si₂ (391,71): C 64,39,H 9,52, N 3,58; gef.: C 64,31, H 9,57, N 3,59. 18. (3' R, 4', S)-5- $\{3', 4'$ -Bis[(trimethylsilyl)oxy]-2', 6', 6'-trimethylcyclohex-1'-enyl]-3-methylpenta-2,4-dienal (27). Unter N₂ wurde eine Lsg. von 2,90 g 25 in 250 ml Et₂O auf -25° gekühlt und mit 2,78 ml 4M DIBAH in Hexan tropfenweise versetzt. Anschliessend wurde noch 2 h bei -10° gerührt, darauf mit einer Suspension aus Kieselgel/ H₂O 5:1 in Et₂O/Pentan 1:1 versetzt und 30 min gerührt. Nach Filtration, Trocknen (MgSO₄) und Eindampfen erhielt man 3,1 g rohes 27 als oranges Öl. Er wurde ohne weitere Reinigung und so rasch als möglich weiterverarbeitet. ¹H-NMR (80 MHz, CDCl₃): 0,14 (CH₃Si); 1.07 (CH₃-C(1)); 1,77 (s, CH₃(18)); 2,30 (CH₃(19)); 3,71 (m, H-C(3)); 3,84 (br. s, H-C(4)); 5.95 (d, J = 8, H-C(10)); 6,20, 6,68 (AB, J = 16, H-C(8), H-C(7)); 10, 14 (d, ³J = 8, H-C(11)).

19. (3' S, 4' S)-5- $\{3', 4'-Bis[$ (trimethylsilyl)oxy]-2',6',6'-trimethylcyclohex-1'-enyl $\}$ -3-methylpenta-2,4-dienal (28). Aus 1,35 g 26 wurde wie in *Exper. 18* 1,50 g rohes 28 erhalten. ¹H-NMR (80 MHz, CDCl₃): 0,16, 0,18 (CH₃Si); 1,04, 1,09 (2s, CH₃-C(1)); 1,72 (br. s, CH₃(18)); 2,30 (br. s, CH₃(19)); 3,75 (m, H-C(3)); 3,89 (br. s, H-C(4)); 5,89 (br. d, ³J = 8, H-C(10)); 6,19, 6,63 (AB, J = 16, H-C(8), H-C(7)); 10,13 (d, ³J = 8, H-C(11)).

20. (\pm) -3,4-Dihydroxy- β -ionone (33). Aus 3,4-Didehydro- β -ionon [29] [30] wurde das Epoxid (\pm)-30 nach [30–32] hergestellt und nach [46]¹⁴) gereinigt. Zu 0,4 l AcOH/Ac₂O 9:1 wurde eine Lsg. von 20 g (\pm)-30 in 20 ml Et₂O zugegeben, darauf unter Rühren auf 0° gekühlt und langsam mit 3,2 ml conc. H₂SO₄ versetzt. Dunkelfärbung! Nach 2 h wurden 20,2 g NaHCO₃ zugegeben, im Teilvakuum auf 50 ml eingeengt und mit Et₂O verdünnt. Dann wurde mit halbkonz. NaHCO₃-Lsg. vollständig neutralisiert. Die wässr. Phase wurde mt Et₂O erschöpfend extrahiert, mit konz. NaCl-Lsg. gewaschen, getrocknet (MgSO₄): 18,5 g 32 (62%) Rohprodukt. Chromatographie an Kieselgel mit Hexan/AcOEt 4:1 \rightarrow 5:2 gab 15,6 g (52%) 32 als blassgelbes Öl. UV (Et₂O, qual.): 215, 272. IR (Film): 1745, 1700, 1680. ¹H-NMR (80 MHz, CDCl₃): 1,10, 1,13, 1,16, 1,20 (4s, CH₃-C(1)); 1,65, 1,73 (2d, J = 1, CH₃(18)); 2,00, 2,03, 2,08, 2,11 (Ac); 2,31 (CH₃(19)); 5,12 (*m*, H-C(3)); 5,48 (*m*, H-C(4)); 6,13, 7,13 (*AB*, H-C(8), H-C(7)). Anal. ber. für C₁₇H₂₄O₅ (308,38): C 66,21, H 7,85; gef.: C 66,16, H 7,78.

Verseifung zu 33. Zu 10,3 g 32 in 200 ml MeOH wurde bei 0° eine Lsg. von 4,7 g KOH in 260 ml MeOH zugetropft. Nach 2 h Rühren bei RT. wurde mit 1N HCl neutralisiert, i. V. eingedampft, der Rückstand mit AcOEt extrahiert und wie üblich aufgearbeitet: 6,6 g 33 als *cis/trans*-Gemisch. UV (Et₂O, qual.): 217, 282.

21. (\pm) -4-[3',4'-(Benzylidendioxy)-3',4'-dihydroxy-2',6',6'-trimethylcyclohex-1'-enyl]but-3-en-2-on ((\pm)-34). Aus 5,0 g cis/trans-Gemisch 33 und 2,01 ml Benzaldehyd-dimethyl-acetal in 150 ml CH₂Cl₂ wurde mit 1,34 ml 10% TsOH in MeOH während 1 h acetalisiert. Da die Umsetzung noch nicht vollständig war, wurde nochmals 0,5 ml Benzaldehyd-dimethyl-acetal zugegeben. Nach 4 h wurde mit gepulvertem K₂CO₃ neutralisiert. Nach Eindampfen i. V. wurde mit Et₂O extrahiert und wie üblich aufgearbeitet: 5,79 g Rohprodukt. Chromatographie an Kieselgel mit CH₂Cl₂/MeOH 19:1 gab 3,16 (\pm)-34 und 2,17 (\pm)-35.

Daten von (±)-**34**. Schmp. 75–76°. UV (Et₂O): 218 (9600), 270 (8500). IR (CHCl₃): 3000*m*, 2960*m*, 2860*m*, 1690*m*, 1670*s*, 1610*m*, 1460*m*, 1400*m*, 1360*m*, 1250*s*, 1150*m*, 1080*s*, 1060*s*, 990*s*. ¹H-NMR (80 MHz, CDCl₃): 1,91, 1,12 (2*s*, CH₃–C(1)); 1,91 (*s*, CH₃(18)); 2,31 (*s*, CH₃(19)); 5,88 (*s*, Acetal); 6,13, 7,18 (*AB*, *J* = 16,5 H–C(8), H–C(7)). ¹³C-NMR (50 MHz, CDCl₃): 18,7 (CH₃(18)); 27,5 (CH₃(19)); 27,6, 29,1 (CH₃–C(1)); 35,8 (C1)); 41,7 (C(2)); 72,2 (C(3)); 77,4 (C(4)); 103,6 (Acetal); 127,0, 128,3, 129,4 (arom. C); 133,1 (C(8)); 137,1 (C(5)); 141,0 (C(6)); 141,6 (C(7)); 198,0 (C(9)). CI-MS: 313 (17, [*M* + 1]⁺⁺), 223 (4), 207 (100), 189 (7), 178 (9), 151 (9), 107 (6). Anal. ber. für C₂₀H₂₄O₃ (312,41): C 75,69, H 7,74; gef.: C 75,50, H 7,58.

22. (\pm) -trans-3,4-Dihydroxy- β -ionon ((\pm)-35). Erhalten entweder durch Acetalisierung des Gemisches (\pm)-33 und Abtrennung von (\pm)-34 oder durch präp. HPLC von (\pm)-33 an LiChrosorb SI 60 (7 μ , 25 × 250 mm) mit Hexan/CH₂Cl₂ 1:1 + 5% EtOH, Flow 20 ml/min, $t_{\rm R}$ ((\pm)-36) 7 min, $t_{\rm R}$ ((\pm)-35) 8,5 min.

Daten von (±)-**35**. Farblose Kristalle aus CHCl₃/Petrolether. Schmp. 71–72°. ¹H-NMR (200 MHz, CDCl₃): 1,09, 1,14 (2s, CH₃-C(1)); 1,60 (dd, ${}^{2}J = 12$, ${}^{3}J = 12$, H_{ax} -C(2)); 1,77 (dd, ${}^{2}J = 12$, ${}^{3}J = 4$, H_{eq} -C(2)); 1,82 (d, J = 1, CH₃(18)); 2,31 (s, CH₃(19)); 3,80 (ddd, J = 12, 8, 4, H-C(3)); 3,96 (br. d, ${}^{3}J = 8$, H-C(4)); 6, 12, 7, 15 (*AB*, J = 16,5, H-C(8), H-C(7)). EI-MS: 224 (1, M^+), 206 (3), 191 (16), 178 (5), 163 (9), 147 (5), 137 (12), 123 (9), 107 (8), 91 (11), 77 (10), 43 (100). Anal. ber. für C₁₃H₂₀O₃ (224,30): C 66,81, H 8,99; gef.: C 67,02, H 8,93.

23. (\pm) -cis-3,4-Dihydroxy- β -ionon ((\pm)-36). Gewonnen durch HPLC von (\pm)-33, s. Exper. 22, oder durch Spaltung von (\pm)-34 wie folgt: das Benzyliden-Derivat wurde in 80% AcOH gelöst und 12 h bei RT. gerührt. Dann war nach DC-Kontrolle kein Edukt mehr vorhanden. Eindampfen i. V., Aufnehmen in AcOEt, Ausschütteln mit ges. NaCl-Lsg., Trocknen (MgSO₄), Eindampfen: fast quant. Ausbeute.

Daten von (±)-**36.** Blassgelbes Öl. ¹H-NMR (200 MHz, CDCl₃): 1,09, 1,12 (2*s*, CH₃-C(1)); 1,57 (*dd*, ²J = 12,5, ³J = 4, H_{eq}-C(2)); 1,74 (*dd*, ²J = 12,5, ³J = 12, H_{ax}-C(2)); 1,89 (*d*, J = 1, CH₃(18)); 2,22 (br. *s*, 2 OH);

¹⁴) Eine Publikation in dieser Zeitschrift ist geplant.

2,31 (s, CH₃(19)); 3,90 (*ddd*, ${}^{3}J = 12, 4, 4, H-C(3)$); 3,97 (br. *d*, ${}^{3}J = 4, H-C(4)$); 6,13, 7,16 (*AB*, *J* = 16,5, H-C(8), H-C(7)).

24. (\pm) -5-[3',4'-(Benzylidendioxy)-3',4'-dihydroxy-2',6',6'-trimethylcyclohex-1'-enyl]-3-methylpenta-2,4diensäure-ethylester (\pm)-37. Aus 3,2 ml Phosphonessigsäure-triethylester, 384 mg NaH und 35 ml THF wurde wie üblich das Ylid hergestellt und dieses mit 1,0 g (\pm)-34 umgesetzt. Nach Eindampfen i. V., Verdünnen mit Et₂O, Waschen mit ges. NH₄Cl-Lsg, Trocknen (MgSO₄), Eindampfen blieben 2,78 g Rohprodukt. Reinigung durch Säulenchromatographie an Kieselgel mit CH₂Cl₂/Hexan 7:3: 1,2 g farbloses Öl, nach HPLC bestehend aus einem (E/Z)-Gemisch 10:1. UV (Et₂O): 204 (14700), 278 (17900). IR (CHCl₃): 2960m, 2930w, 2860m, 1700s, 1610s, 1460m, 1440m, 1360m, 1350m, 1230s, 1160m, 1080s, 1060s, 970m. ¹H-NMR (80 MHz, CDCl₃): 1,06, 1,08 (z_s , CH₃-C(1)); 1,28 (t, ³J = 7, CH₃CH₂); 1,88 (s, CH₃(18)); 2,33 (d, J = 1, CH₃(19)); 4,18 (q, ³J = 7, CH₃CH₂); 5,77 (br. s, H-C(10)); 5,88 (s, Acetal); 6,08, 6,49 (AB, J = 16, H-C(8), H-C(7)); 5,2-7,6 (m, arom. H). ¹³C-NMR (50 MHz, CDCl₃): 1,36 (CH₃CH₂); 14,3 (CH₃(19)); 18,7 (CH₃(18)); 27,5, 29,3 (CH₃-C(1)); 36,1 (C(1)); 41,8 (C(2)); 59,7 (CH₃CH₂); 72,2 (C(3)); 77,9 (C(4)); 103,6 (Acetal); 119,4 (C(10)); 125,7, 127,0, 128,3, 129,3 (aro, C); 131,7 (C(8)); 137,3 (C(5)); 137,4 (C(7))); 142,8 (C(6)); 151,7 (C(9)); 167,0 (C(11)). CI-MS: 383 ([45, M + 1]⁺), 337 (3), 317 (3), 293 (4), 277 (100), 259 (19), 248 (15), 231 (11), 219 (12).

25. (\pm) -5-[3',4'-(Benzylidendioxy)-3',4'-dihydroxy-2',6',6'-trimethylcyclohex-1'-enyl]-3-methylpenta-2,4dien-1-ol ((\pm)-38). Die Lsg. von 1 g (\pm)-37 in 40 ml Et₂O wurde bei 0° und unter N₂ mit 5,23 ml 1M DIBAH-Lsg. in Hexan reduziert. Nach 45 min wurde mit eiskalter ges. Seignette-Salz-Lsg. versetzt und 2 h gerührt. Darauf Extraktion mit Et₂O, Waschen mit ges. NH₄Cl-Lsg., Sole und Trocknen (MgSO₄): 0,93 g Rohprodukt; nach Säulenchromatographie an Kieselgel mit CH₂Cl₂/MeOH 99:1 0,80 g blassgelbes Öl, (E/Z)-Verhältnis 9:1. UV (Et₂O): 216,5 (8500), 249 (11200). IR (CHCl₃): 3600w, 3450w (br.), 2990m, 2950s, 2860m, 1720w, 1660w, 1610w, 1460w, 1400m, 1360m, 1080s, 1060s, 1020s, 990s, 910w. ¹H-NMR (80 MHz, CHCl₃): 1,05, 1,08 (2s, CH₃-C(1)); 1,25 (br. s, OH); 1,84 (s, CH₃(18)); 1,89 (s, CH₃(19)); 5,63 (t, J = 6, H–C(10)); 5,88 (s, Acetal); 6,09 (s, H–C(7), H–C(8)); 7,2-7,6 (m, arom. H). CI-MS: 340 (6, M^+), 333 (2), 318 (3), 234 (7), 206 (32), 191 (18), 173 (18), 161 (17), 145 (25), 133 (22), 122 (43), 119 (51), 105 (100).

26. (\pm) -5-[3',4'-(Benzylidendioxy)-3',4'-dihydroxy-2',6',6'-trimethylcyclohex-1'-enyl]-3-methylpenta-2,4-dienal ((\pm)-**39**). Aus 400 mg (\pm)-**38**, 50 ml AcOEt, 4 g MnO₂ wurden nach 1,5 h und üblicher Aufarbeitung mit Chromatographie an Kieselgel (CH₂Cl₂/MeOH 99,5: 0,5) 295 g (\pm)-**39** als gelbliches Öl erhalten. Nach HPLC (*E*/*Z*)-Gemisch ca. 9.1. UV (Et₂O): 288 (14600). IR (CHCl₃): 2960w, 2860w, 1660s, 1610m, 1460w, 1400w, 1360w, 1150w, 1110m, 1080m, 1060s, 990m, 970m. ¹H-NMR (80 MHz, CDCl₃): 1,09, 1,11 (2s, CH₃-C(1)); 1,92 (s, CH₃(18)); 2,33 (d, *J* = 1, CH₃(19)); 5,89 (s, Acetal); 5,96 (d, ³*J* = 8, H–C(10)); 6,22, 6,88 (*AB*, *J* = 16, H–C(8), H–C(7)); 7,2–7,6 (m, arom. H); 10,15 (d, ³*J* = 8, H–C(11)). ¹³C-NMR (50 MHz, CDCl₃): 12,9 (CH₃(19)); 18,5 (CH₃(18)); 27,6, 29,3 (CH₃-C(1)); 36,1 (C(1)); 41,8 (C(2)); 72,2 (C(3)); 77,7 (C(4)); 103,6 (Acetal); 126,7, 127,0, 128,3, 129,6 (arom. C); 129,3 (C(10)); 133,6 (C(8)); 137,0 (C(7)); 137,2 (C(5)); 142,4 (C(6)); 153,8 (C(9)); 191,2 (C(11)). MS: 339 ([49, M + 1]⁺), 271 (6), 249 (9), 233 (100), 215 (91), 204 (18), 187 (10), 177 (27), 149 (6), 107 (9).

27. (3SR,4RS,3'SR,4'RS)-3,4,3',4'-Bis(benzylidendioxy)-β,β,carotin-3,4,3',4'-tetrol((±)-41). Zu 121 mg Diphosphonium-ylid 40 in 1 ml MeOH wurden unter N₂ bei -13° gleichzeitig eine Lsg. von 100 mg (±)-39 in 1 ml MeOH und 0,3 ml 1N MeONa in 0,7 ml MeOH zugetropft. Nach Rühren über Nacht wurde die dunkelrote Lsg. mit Et₂O verdünnt, mit ges. NH₄Cl-Lsg. und ges. NaCl-Lsg. gewaschen, und getrocknet (MgSO₄). Nach dem Einengen filtrierte man die Lsg. durch Alox neutral, Akt. IV, mit Et₂O/Hexan 1:1. Das rote Filtrat wurde eingedampft, der Rückstand in Heptan aufgenommen und diese Lsg. unter Belichtung mit einer 150-W-Glühbirne 1,5 h unter Rückfluss gekocht. Darauf wurde an MgO/Celite 9:1 mit Hexan/Aceton 97:3 bis 9:1 chromatographiert. Aus der dunkelroten Hauptzone erhielten wir nach Eindampfen und Kristallisieren aus Et₂O 4,2 mg (4%) (±)-41 als dunkelrotes Pulver. Schmp. 184,5-185,5°. UV/VIS (Et₂O): 425 (105000, sh), 447,5 (145700), 475 (126900). ¹H-NMR (400 MHz, CDCl₃): 1,07, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1')); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1)); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1)); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1), CH₃-C(1)); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1)); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1)); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1)); 1,72 (dd, ²J = 12,5, ³J = 10, 1,10 (2s, CH₃-C(1)); 1,72 (dd, ²J = 12,5, 1,10 (2s, CH₃-C(1)); 1,10 (2s, CH₃-C(1) $H_{ax} - C(2), H_{ax} - C(2')$; 1,85 (dd, ²J = 12,5, ³J = 5, $H_{eq} - C(2), H - C(2')$; 1,93 (s, $CH_3(18), CH_3(18')$); 1,98 (s, $CH_3(18')$); 1,98 (s, CH₃(19), CH₃(19'), CH₃(20), CH₃(20')); 4,43 (m, H-C(3), H-C(3'), H-C(4), H-C(4')); 5,90 (s, Acetal); 6,11, 6,20 (AB, H-C(7), H-C(7), H-C(8), H-C(8')); 6,19 (d, J = 11, H-C(10), H-C(10')); 6,27 (br. d, J = 8, H-C(14), H-C(14)); 6,27 (br. d, J = 8, H-C(14)); 6,19 (d, J = 11, H-C(10)); 6,27 (br. d, J = 8, H-C(14)); 6,19 (d, J = 11, H-C(10)); 6,27 (br. d, J = 8, H-C(14)); 6,19 (d, J = 11, H-C(10)); 6,1H-C(14')); 6,38 (d, J = 15, H-C(12), H-C(12')); ca. 6,1-6,7 (m, H-C(11), H-C(11'), H-C(15), H-C(15')); 7,37, 7,51 (m, arom. H). CI-MS: 771 ([4, M + 1]⁺), 684 (4), 670 (8), 564 (6), 209 (18), 197 (17), 185 (14), 171 (18), 157 (27), 145 (30), 133 (30), 119 (42), 105 (100).

28. (\pm) -Essigsäure-[6-acetoxy-3-(3'-methyl-5'-oxopenta-1',3'-dienyl)-2,4,4-trimethylcyclohex-2-enyl]ester ((\pm)-42). Die Lsg. von 90 mg (\pm)-39. in 5 ml 80% AcOH wurde bei RT. so lange gerührt, bis nach DC das Edukt hydrolysiert war. Dann Eindampfen i. V., den Rückstand neutralisieren mit verd. NaOH. Extrahieren mit AcOEt,

Waschen mit ges. NaCl-Lsg., Trocknen (MgSO₄), Eindampfen, Chromatographieren an Kieselgel mit CH₂Cl₂/ MeOH 19:1 gab 52 mg blassgelbes Öl; nach NMR (*E/Z*)-Gemisch 17:5. ¹H-NMR (200 MHz, CDCl₃): 1,08, 1,10 (2s, CH₃-C(1)); 1,89 (*d*, *J* = 1, CH₃(18)); 2,32 (*d*, *J* = 1, CH₃(19)); 3,90 (*m*, H–C(3)); 3,98 (br. *d*, *J* = 3,5, H–C(4)); 5,95 (br. *d*, ³*J* = 8, H–C(10)); 6,23, 6,65 (*AB*, *J* = 16, H–C(8), H–C(7)); 10,15 (*d*, ³*J* = 8, H–C(11)).

Mit Pyridin/Ac₂O und einer Spatelspitze 4-(Dimethylamino)pyridin wurde acetyliert, wobei nach üblicher Aufarbeitung (±)-42 als Öl in 94% Ausbeute erhalten wurde. ¹H-NMR (200 MHz, CDCl₃): 1,13, 1,15 (2s, CH₃-C(1)); 1,72 (d, J = 1, CH₃(18)); 2,01 (s, Ac-C(3)); 2,13 (s, Ac-C(4)); 2,32 (d, J = 1, CH₃(19)); 5,13 (ddd, ³J = 13, 7,5, 4, H-C(3)); 5,49 (br. d, ³J = 4, H-C(4)); 5,97 (br. d, ³J = 8, H-C(10)); 6,24, 6,63 (AB, J = 16, H-C(8), H-C(7)); 10,15 (d, ³J = 8, H-C(11)).

29. (\pm) - β , β -Carotin-cis,cis-3,4,3',4'-tetrol (= (3 RS,4'SR,3' RS,4'SR)- β , β -Carotin-3,4,3'-4'-tetrol; (\pm)-43). Aus 90 mg (\pm)-42 und 73.4 mg 40 wurde wie in *Exper.* 27 das Carotin (\pm)-43 hergestellt. Ausbeute: 2%; dunkelrotes Pulver. Schmp. 203,5–204,5°. HPLC-Co-chromatogramm mit 47; Spektren wie 47; s. *Exper.* 30.

30. (3S,4R,3'S,4'R)-Crustaxanthin (= (3S,4R,3'S,4'R)- β,β -Carotin-3,4,3',4'-tetrol; 47). Bei -78° und unter Ar wurde die Lsg. von 1,58 g C₁₀-Diphosphonat 44 in 90 ml THF/DMPU 2:1 mit 4,86 ml einer 1,6M BuLi/Hexan-Lsg. in 44 übergeführt. Zur rotbraunen Bis-ylid-Lsg. wurde hierauf 2,92 g (-)-27 in 10 ml THF unter Rühren zugetropft. Man liess langsam auf RT. kommen. Nach 6 h Rühren wurde mit viel Et₂O verdünnt und die Lsg. im Scheidetrichter mit halbkonz. NaCl-Lsg. ausgewaschen. Nach Trocknen und Eindampfen wurde an Aluminiumoxid, Akt. III mit Hexan/Et₂O 24:1 chromatographiert: 2,19 g rotes, metallisch glänzendes Pulver. Umkristallisation aus Et₂O/EtOH; Rote Plättchen. Schmp. 153,8-154,8°.

Daten von (3S,4R,3'S,4'R)-3,4,3',4'-Tetrakis[(trimethylsilyl)oxy]-15,15'-didehydro-β,β-Carotin (45). UV/ VIS (Et₂O): 408 (81500, sh), 427 (97100), 452 (80600). CD (Et₂O, RT.): 240 (-9,2), 295 (0), 330 (+9,2), 365 (0), 420 (-1,5), 480 (0). ¹H-NMR (400 MHz, CDCl₃): 0,15 (s, CH₃Si); 1,06, 1,07 (2s, CH₃-C(1), CH₃-C(1')); 1,27 (br. d, ${}^{2}J = 12$, H_{eq} -C(2), H_{eq} -C(2)); 1,78 (s, CH₃(18), CH₃(18')); 1,96 (dd, ${}^{2}J = 12$, ${}^{3}J = 12$, H_{ax} -C(2), H_{ax} -C(2)); 1,97 (s, CH₃(19), CH₃(19')); 2,12 (s, CH₃(20), CH₃(20')); 3,79 (ddd, J = 12, 3, 3, H-C(3), H-C(3')); 3,85 (br. d, J = 3, H-C(4), H-C(4')); 6,37 (d, J = 15, H-C(14)), H-C(12')); 6,17 (dd, J = 15, 11, H-C(11)). 13 C-NMR (50 MHz, CDCl₃): 0,3, 1,1 (CH₃Si); 1,28 (CH₃(19), CH₃(19')); 15,3 (CH₃(20), CH₃(20')); 19,8 (CH₃(18), CH₃(18')); 27,6, 29,9 (CH₃-C(1), CH₃-C(1')); 127,3 (C(1), C(1')); 110,8 (C(14), C(14')); 126,5 (C(7), C(7')); 127,0 (C(11), C(11')); 129,3 (C(5), C(5')); 131,0 (C(10), C(10')); 135,4 (C(12), C(12')); 137,0 (C(9), C(9')); 138.6 (C(8), C(8')); 140,4 (C(6), C(6')); 146,6 (C(13), C(13')); cinzelne Zuordnungen durch selektive Einstrahlungsexperimente bestimmt. EI-MS: 886 (15, M^{+} , 796 (1), 377 (7), 325 (6), 191 (33), 147 (26), 117 (17), 73 (100).

Die katalytische Hydrierung von 45 zu 46 wurde an 2,23 Lindlar-Katalysator in 50 ml AcOEt + 2 Tropfen einer 10% Lsg. von Chinolin in AcOEt durchgeführt. Nach 1 h Vorhydrieren wurden 700 mg 45 zugegeben und unter UV/VIS-Kontrolle hydriert. Die H₂-Aufnahme war langsam und dauerte 2,5 h. Nach Filtration über *Celite* und Eindampfen wurde der Rückstand in 125 ml Heptan gelöst und unter Belichten mit einer 150-W Glühbirne 90 min gekocht. Nach starkem Einengen und Abfiltrieren vom ausgefallenen Produkt 819 mg Rohprodukt als braunrotes Pulver. Umkristallisation aus Et₂O/EtOH gab metallisch-glänzende braunrote Plättchen. Schmp. 182,5–183,5°.

Daten von $(3S, 4R, 3'S, 4'R)^{-3}, 4, 3', 4'$ -Tetrakis[(trimethylsilyl)oxy]- β,β -Carotin (46). UV/VIS (Et₂O): 275 (24400), 335 (8000), 425 (97900, sh), 447, 5 (128500), 475 (114400). CD (Et₂O, RT.): 222 (-11,8), 230 (0), 255 (+8,8), 260 (0), 280 (-18,2), 308 (0), 330 (+4,8), 365 (0), 450 (+2,5), 500 (0). ¹H-NMR (400 MHz, CDCl₃): 0,15 (CH₃Si); 1,07 (s, CH₃-C(1), CH₃-C(1')); 1,27 (br. d, ²J = 12, H_{eq}-C(2), H_{eq}-C(2')); 1,79 (s, CH₃(18), CH₃C(18')); 1,96 (s, CH₃C(19), CH₃C(19')*); 1,98 (s, CH₃-C(20), CH₃C(20')*); ca. 1,96 (dd, ²J = 12, ³J = 12, H_{ax}-C(2), H_{ax}-C(2')); 3,79 (ddd, J = 12, 7, 3, H-C(3), H-C(3')); 3,85 (br. d, J = 3, H-C(4), H-C(4')); 6,10 (d, J = 16, H-C(7), H-C(7')); 6,17 (d, J = 11, H-C(10), H-C(10')); ca. 6,17 (d, J = 16, H-C(8), H-C(8')); 6,26 (br. d, J = 8, H-C(14), H-C(14')); 6.37 (d, J = 15, H-C(12), H-C(12')); ca. 6,6-6,7 (m, H-C(11), H-C(11'), H-C(15')). EI-MS: 888 (100, M⁺); 796 (16), 377 (14), 191 (39), 147 (44), 117 (22), 91 (19), 73 (100).

Die Abspaltung der Me₃Si-Gruppen wurde an 90 mg **46**, gelöst in 10 ml THF mit 96 mg (Bu)₄NF während 20 min bei RT. und unter Ar vorgenommen. Darauf Verdünnen mit H₂O, Abtrennen des Festkörpers. Umkristallation aus $CH_2Cl_2/Et_2O/Hexan: 26,4$ mg rotviolette, metallisch glänzende Nädelchen. Aus den Mutterlaugen wurde durch Chromatographie an Kieselgel mit $CH_2Cl_2/Hexan 1:1$ und 6% EtOH und Kristallisation noch 22.7 mg **47** gewonnen. Schmp. 207,0–207,5°.

Daten von **47**. UV/VIS (EtOH): 278 (27000), 335 (9000), 425 (98600, sh), 450,5 (143200), 478 (126900). CD (EtOH, RT.): 222 (-13,2), 234 (0), 248 (+10,0), 258 (0), 281 (-14,6), 310 (0), 337 (+4), 381 (0), 445 (+1,9), 500 (0).

¹H-NMR (400 MHz, CDCl₃): 1,07, 1,09 (2s, CH₃-C(1), CH₃-C(1')); ca. 1,57 (ddd, ${}^{2}J = 12,5, {}^{3}J = 4, {}^{4}J = 1,$ $H_{eq} - C(2), H_{eq} - C(2'); 1,69 (dd, {}^{2}J = 12,5, {}^{3}J = 12,5, H_{ax} - C(2), H_{ax} - C(2'); 1,90 (s, CH_{3}(18), CH_{3}(18')); 1,97 (s, CH_{3}(18'$ $CH_{3}(19), CH_{3}(19')^{*}); 1,98 (s, CH_{3}(20), CH_{3}(20')^{*}); 2,13 (d, J = 10, HO-C(3), HO-C(3')); 2,17 (d, J = 5,5, CH_{3}(19')^{*}); 1,98 (s, CH_{3}(20), CH_{3}(20')^{*}); 2,17 (d, J = 5,5, CH_{3}(19')^{*}); 1,98 (s, CH_{3}(20), CH_{3}(20')^{*}); 2,18 (d, J = 10, HO-C(3), HO-C(3')); 2,17 (d, J = 5,5, CH_{3}(20), CH_{3}(20), CH_{3}(20')^{*}); 2,18 (d, J = 10, HO-C(3), HO-C(3')); 2,17 (d, J = 5,5, CH_{3}(20), CH_{3}(20), CH_{3}(20')^{*}); 2,18 (d, J = 10, HO-C(3), HO-C(3')); 2,17 (d, J = 5,5, CH_{3}(20), CH_$ (d, J = 16, H-C(7), H-C(7')); 6, 18 (d, J = 16, H-C(8), H-C(8')); 6, 18 (d, J = 11, H-C(10), H-C(10')); 6, 27 (br. 10, 10); 6, 10); 6, 10); 6, 10); 6, 10); 6, 10); 6, 10); 6, 10); 6, 10); 7, 10);d, J = 8, H–C(14), H–C(14')); 6,39 (d, J = 15, H–C(12), H–C(12')); 6,6–6,7 (m, H–C(11), H–C(11'), H–C(15), H-C(15')). ¹H-NMR (400 MHz, (D₆)DMSO): 0,99, 1,02 (2s, CH₃-C(1), CH₃(1')); 1,30 (ddd, ²J = 12,5, ³J = 3, ³J ${}^{4}J = 1, H_{ea} - C(2), H_{ea} - C(2'); 1,68 (dd, {}^{2}J = 12,5, {}^{3}J = 12,5, H_{ax} - C(2), H_{ax} - C(2'); 1,77 (s, CH_3(18), CH_3(18'));$ H-C(4), H-C(4')); 4,20 (*d*, J = 7, HO-C(3), HO-C(3')); 4,44 (*d*, J = 5, HO-C(4), HO-C(4')); 6,10 (*d*, J = 16, H-C(7), H-C(7'); 6,17 (d, J = 16, H-C(8), H-C(8')); 6,23 (d, J = 11, H-C(10), H-C(10')); 6,33 (br. d, J = 8, J) = 0, J = 0, JH-C(14), H-C(14'); 6,40 (d, J = 15, H-C(12), H-C(12'); 6,6-6,75 (m, H-C(11), H-C(11'), H-C(15), H-C(15)); H-C(15), H-CH-C(15')). ¹³C-NMR (100 MHz, (D₆)DMSO): 12,4 (CH₃(19), CH₃(19')*); 12,5 (CH₃(20), CH₃(20')*); 19,8 (CH₃(18), CH₃(18')); 27,5, 30,0 (CH₃-C(1), CH₃-C(1')); 36,4 (C(1), C(1')); 41,1 (C(2), C(2')); 65,6 (C(3), C(3')); 70,8 (C(4), C(4')); 125,1 (C(11), C(11')); 125,4 (C(7), C(7')); 129,2 (C(5), C(5')); 130,4 (C(15), C(15')); 131,7 (C(10), C(10')); 132,7 (C(14), C(14')); 135,2 (C(9), C(9')); 136,2 (C(13), C(13')); 137,6 (C(12), C(12')); 138,1 (C(8), C(8')); 139,7 (C(6), C(6')). EI-MS: 600 (100, M⁺⁺), 582 (20), 566 (8), 548 (3), 508 (19), 494 (2), 363 (10), 197 (28), 171 (35), 157 (50), 145 (58), 133 (49), 119 (70).

31. (3S,4S,3'S,4'S)-*Crustaxanthin* (= (3S,4S,3'S,4'S)- β , β -*Carotin*-3,4,3',4'-*tetrol*; **50**). Aus 1,36 g (-)-**28** wurde wie in *Exper. 30* beschrieben das (3S,4S,3'S,4'S)- β , β -*Carotin*- β , β -*carotin* (**48**) hergestellt. Ausbeute: 56%; aus Et₂O/EtOH orange, verfilzte Nadeln. Schmp. 121–123°.

Daten von **48**. UV/VIS (Et₂O): 277 (21100), 405 (82 900, sh), 426 (98 500), 452 (82 200). CD (Et₂O, RT.): 222 (0), 275 (-8,2), 300 (0), 330 (+9,0), 360 (0), 430 (-4,8), 500 (0). ¹H-NMR (400 MHz, CDCl₃): 0,17, 0,19 (*s*, CH₃Si); 1,04, 1,08 (2 *s*, CH₃-C(1), CH₃-C(1')); 1,56 (*dd*, ²*J* = 13, ³*J* = 12, H_{ax}-C(2), H_{ax}-C(2')); 1,64 (*dd*, ²*J* = 13, ³*J* = 4, H_{eq}-C(2), H_{eq}-C(2')); 1,73 (*s*, CH₃(18), CH₃(18')); 1,97 (*s*, CH₃(19), CH₃(19')); 2,11 (*s*, CH₃(20), CH₃(20')); 3,80 (*ddd*, *J* = 12, 7, 4, H-C(3), H-C(3')); 3,97 (*d*, *J* = 7, H-C(4), H-C(4')); 5,74 (*s*, H-C(14), H-C(14')); 6,10 (*d*, H-C(7), H-C(7')); *ca*. 6,13 (*d*, *J* = 11, H-C(10) H-C(10'), liegt unter dem *AB* von H-C(7), H-C(7'), H-C(8)); 6,16 (*d*, *J* = 16, H-C(8), H-C(8')); 6,37 (*d*, *J* = 15, H-C(12), H-C(12')); 6,70 (*dd*, *J* = 15, 11, H-C(11), H-C(11')). ¹³C-NMR (50 MHz, CDCl₃): 0,7, 1,0 (CH₃Si); 12.8 (CH₃(19), CH₃(19')); 15,3 (CH₃(20), CH₃(20')); 18,1 (CH₃(18), CH₃(18')); 28,1 (30,4 (CH₃-C(1), CH₃-C(1')); 36,8 (C(1), (C(1')); 45,6 (C(2), C(2')); 71,6 (C(3), C(3')); 78,6 (C(4), C(4')); 98,1 (C(15), C(15')); 110,8 (C(14), C(14')); 126,3 (C(7), C(7')); 126,9 (C(11), C(11')); 129,7 (C(5), C(5')); 131,0 (C(10), C(10')); 135,4 (C(12), C(12')); 137,0 (C(9), C(9')); 139,1 (C(8), C(8')); 139,9 (C(6), C(6')); 146,6 (C(13), C(13')). EI-MS: 886 (100, M⁺⁺), 796 (24), 690 (19), 325 (19), 191 (68), 147 (64), 117 (19), 73 (97).

Die katalytische Reduktion analog *Exper. 30* machte grosse Schwierigkeiten, sodass mehrere Portionen von frischem Katalysator eingesetzt werden mussten. Das Reduktionsprodukt wurde wiederum in Heptan isomerisiert, an Al₂O₃ chromatographiert und aus Et₂O/EtOH kristallisiert. Ausbeute: 65 mg **49** aus 240 mg **48** (27%). Ziegelrotes Pulver. Schmp. 148–150°.

Daten von (3S, 4S, 3'S, 4'S) - 3, 4, 3', 4'-Tetrakis[(trimethylsilyl) oxy]- β,β -carotin (49). UV/VIS (Et₂O): 275 (31800), 335 (19500), 425 (103400, sh), 448,5 (140600), 476,5 (120600). CD (Et₂O, RT.): 222 (-8,6), 230 (0), 242 (+11,5), 259 (0), 280 (-19,0), 310 (0), 340 (+3,8), 380 (0). ¹H-NMR (400 MHz, CDCl₃): 0,17, 0,19 (s, CH₃Si); 1,04, 1,08 (2 s, CH₃-C(1), CH₃(1')); 1,56 (dd, ²J = 13, ³J = 12, H_{ax}-C(2), H_{ax}-C(2')); 1,64 (dd, ²J = 13, ³J = 4, H_{eq}-C(2), H_{eq}-C(2')); 1,73 (s, CH₃(18), CH₃(18')); 1,96 (s, CH₃(19), CH₃(19')*); 1,98 (s, CH₃(20), CH₃(20')*); 3,80 (ddd, J = 12, 7, 4, H-C(3), H-C(3')); 3,98 (br. d, J = 7, H-C(4), H-C(4')); 6,08 (d, J = 16, H-C(7), H-C(7')); 6,15 (d, J = 11, H-C(10), H-C(10')); 6,17 (d, J = 16, H-C(8), H-C(8')); 6,27 (br. d, J = 8, H-C(14), H-C(14')); 6,37 (d, J = 15, H-C(12), H-C(12')); 6,6-6,7 (m, H-C(11), H-C(11'), H-C(15), H-C(15')). EI-MS: 888 (15, M⁺⁺), 796 (7), 772 (3), 680 (4), 586 (3), 377 (12), 209 (24), 191 (55), 147 (28), 117 (22), 91 (13), 73 (100).

Die Entsilylierung von 49 zu 50 wurde wie in *Exper. 30* beschrieben durchgeführt. Umkristallisation aus $CH_2Cl_2/EtOH/Hexan gab rotviolette, metallisch glänzende Nädelchen (48 %). Schmp. 206,5–207,0°.$

Daten von **50.** UV/VIS (EtOH): 275 (22600), 335 (7800), 425 (99 200, sh), 451 (142600), 478 (124300). CD (EtOH, RT.): 213 (0), 222 (-13,3), 230 (0), 244 (+19,5), 262 (0), 283 (-24,8), 308 (0), 342 (+8,5), 430 (0). ¹H-NMR ((D₆)DMSO): 1,00, 1,03 (2 s, CH₃-C(1), CH₃-C(1')); 1,39 (*dd*, ²*J* = 12,5, ³*J* = 12, H_{ax}-C(2), H_{ax}-C(2')); 1,57 (br. *d*, ²*J* = 12,5, ³*J* = 3, H_{eq}-C(2), H_{eq}-C(2')); 1,70 (*s*, CH₃(18), CH₃(18')); 1,93 (*s*, CH₃(19), CH₃(19'), CH₃(20), CH₃(20')); 3,53 (*dddd*, *J* = 12, 7, 4, 3, H-C(3), H-C(3')); 3,61 (*dd*, *J* = 6, 4, H-C(4), H-C(4')); 4,61 (*d*, *J* = 4, HO-C(3), HO-C(3')); 4,80 (*d*, *J* = 6, HO-C(4), HO-C(4')); 6,09 (*d*, *J* = 16, H-C(7), H-C(7')); 6,16 (*d*, *J* = 16, H-C(8), H-C(8')); 6,23 (*d*, *J* = 11, H-C(10), H-C(10')); 6,33 (br. *d*, *J* = 8, H-C(14), H-C(14')); 6,40 (*d*, *J* = 40, H-C(8), H-C(8')); 6,23 (*d*, *J* = 11, H-C(10), H-C(10')); 6,33 (br. *d*, *J* = 8, H-C(14), H-C(14')); 6,40 (*d*, *J* = 16, H-C(14), H-C(14')); 6,40 (*d*, *J* = 10, H-C(10), H-C(10')); 6,33 (br. *d*, *J* = 8, H-C(14), H-C(14')); 6,40 (*d*, *J* = 16, H-C(14), H-C(14')); 6,40 (*d*, *J* = 16, H-C(14), H-C(14')); 6,40 (*d*, *J* = 16, H-C(14), H-C(14')); 6,40 (*d*, *J* = 10, H-C(14

 $J = 15, H-C(12), H-C(12'); 6,6-6,7 (m, H-C(11), H-C(11'), H-C(15), H-C(15')). {}^{13}C-NMR (100 MHz, (D_6)DMSO): 12,4 (CH_3(19), CH_3(19')*); 12,5 (CH_3(20), CH_3(20')*); 17,1 (CH_3(18), CH_3(18')); 28,1, 30,3 (CH_3-C(1), CH_3-C(1')); 36,1 (C(1), C(1')); 45,2 (C(2), C(2')); 69,2 (C(3), C(3')); 76.5 (C(4), C(4')); 125,1 (C(11), C(11')); 126,0 (C(7), C(7')); 130,4 (C(15), C(15')); 130,6 (C(5), C(5')); 131,6 (C(10), C(10')); 132,7 (C(14), C(14')); 135,3 (C(9), C(9')); 136,2 (C(13), C(13')); 137,5 (C(12), C(12')); 138,0 (C(8), C(8')); 138,3 (C(6), C(6')). EI-MS: 600 (89, <math>M^+$), 582 (18), 564 (10), 548 (3), 508 (20), 494 (6), 456 (3), 378 (2), 197 (25), 171 (28), 157 (44), 145 (55), 133 (44), 119 (65), 105 (64), 91 (100).

32. Tetraacetyl-trans-crustaxanthin (= (3S,4S,3'S,4'S)-3,4,3',4'-Tetraacetoxy- β , β -carotin; **51**). Die Acetylierung von **50** wurde wie üblich mit AcO/Pyridin unter Zusatz von einer Spur 4-(Dimethylamino)pyridin bei RT. vorgenommen, hierauf Eindampfen i.V., Aufnahmen des Rückstands in Et₂O, Auswaschen mit CuSO₄-, konz. NaCl-Lsg., Trocknen (MgSO₄), Eindampfen, Chromatographie an Kieselgel mit Toluol/AcOEt 1:1, Eindampfen, UW/VIS (Et₂O) 276 (12100), 425 (46800, sh) 448 (64200), 476,5 (56500). CD (Et₂O, RT.): 230 (0), 246 (+19,9), 261 (0), 282 (-24,9), 305 (0), 338 (+6,6), 364 (0), 400-500 (zahlreiche, schwache, positive Banden). ¹H-NMR (400 MHz, CDCl₃): 1,088, 1,163 (2s, CH₃-C(1), CH₃-C(1')); 1,654 (s, CH₃(18), CH₃(18')); 1,706 (t, ²J = 4,1, ³J = 12,2, H_{ax}-C(2), H_{ax}-C(2)); 1,808 (dd, ²J = 12,2, ³J = 4,1 H_{eq}-C(2)); 1,971 (s, CH₃(19), CH₃(19'*); 1,981 (s, CH₃(20), CH₃(20)*); 2,039 (s, Ac-C(3), Ac-C(3')); 2,056 (s, Ac-C(4), Ac-C(4')); 5,163 (*ddd*, ³J = 11, 9, 7, 8, 4,1, H-C(3), H-C(3')); 5,562, (d, ³J = 8, H-C(4), H-C(4')); 6,053 (d, ³J = 15,5, H-C(7), H-C(7')); 6,171 (d, ³J = 10, H-C(8)); H-C(8')); 6,193 (br. d, ³J = 11, H-C(10), H-C(10')); *ca*. 6,27 (br. d, *J* ≈ 8,5, H-C(14), H-C(14')); 6,388 (d, *J* = 15,5, H-C(12), H-C(12), H-C(12')); *ca*. 6,64 (m, H-C(11), H-C(11'), H-C(15')).

LITERATURVERZEICHNIS

- [1] D. J. Buschor, 'Carotinoide mit 3,4-Dihydroxy-β-Endgruppen', Dissertation, Universität Zürich, 1989.
- [2] C. Bodea, E. Nicoara, G. Illyes, M. Suteu, Rev. Roumaine Biochim. 1965, 2, 205.
- [3] C. Bodea, E. Nicoara, G. Illyes, M. Suteu, ref. Chem. Abstr. 1968, 68, 13214.
- [4] C. Bodea, E. Nicoara, G. Illyes, M. Suteu, Rev. Roumaine Biochim. 1967, 12, 547.
- [5] C. Bodea, G. Neamtu, V. Tamas, Rev. Roumaine Biochim. 1966, 3, 305.
- [6] F.C. Czygan, Planta (Berl.) 1969, 85, 35.
- [7] F.C. Czygan, Flora (Jena) 1968, 159, 339.
- [8] F.C. Czygan, Z. Naturforsch., B 1968, 23, 1367.
- [9] H. Pfander, 'Key to Carotenoids', Birkhäuser, Basel, 1987.
- [10] E. Märki-Fischer, C. H. Eugster, Helv. Chim. Acta 1985, 68, 1708.
- [11] T. Uchiyama, T. Miyase, A. Ueno, K. Usmanghani, *Phytochemistry* 1989, 28, 3369; S. Shimizu, T. Miyase, A. Ueno, K. Usmanghani, *ibid.* 1989, 28, 3399; T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi, H. Oguchi, *ibid.* 1989, 28, 3483.
- [12] A. Haag, C.H. Eugster, Helv. Chim. Acta 1982, 65, 1795; ibid. 1985, 68, 1897.
- [13] A.G. Andrewes, G. Borch, S. Liaaen-Jensen, G. Snatzke, Acta Chem. Scand., Ser. B 1974, 28, 730.
- [14] B.C.L. Weedon, Pure Appl. Chem. 1976, 47, 161.
- [15] J.D. Surmatis, R. Thommen, J. Org. Chem. 1967, 32, 180.
- [16] M. Acemoglu, P. Uebelhart, M. Rey, C. H. Eugster, Helv. Chim. Acta 1988, 71, 931.
- [17] S. Krishnamurthy, H.C. Brown, J. Org. Chem. 1977, 42, 1197.
- [18] F. Kienzle, H. Mayer, Helv. Chim. Acta 1978, 61, 2609.
- [19] E. Widmer, R. Zell, T. Lukac, M. Casadei, P. Schönholzer, E.A. Broger, Helv. Chim. Acta 1981, 64, 2405.
- [20] E. Dimitriadis, C. R. Strauss, B. Wilson, P. J. Williams, *Phytochemisty* 1985, 24, 767.
- [21] E. Dimitriadis, C. R. Strauss, B. Wilson, P. J. Williams, Food Chem. 1986, 34, 145.
- [22] J. Lugtenburg, J. M. C. Courtin, L. Verhuigen, P. L. Biesheuvel, Recl. Trav. Chim. Pays-Bas 1987, 106, 112.
- [23] K. Fujiwara, H. Takahashi, M. Otha, Bull. Chem. Soc. Jpn. 1962, 35, 1743.
- [24] R. Buchecker, P. Hamm, C. H. Eugster, Helv. Chim. Acta 1974, 57, 631.
- [25] C. H. Eugster, in 'Carotinoid Chemistry and Biochemistry', Ed. S. G. Britton und T. W. Goodwin, Pergamon Press, Oxford, 1982.
- [26] H. Labhart, G. Wagnière, Helv. Chim. Acta 1959, 42, 2219.
- [27] A. Moscowitz, K. Mislow, M. A. W. Glass, C. Djerassi, J. Am. Chem. Soc. 1962, 84, 1945.

- [28] G. Ohloff, E. Otto, V. Rautenstrauch, G. Snatzke, Helv. Chim. Acta 1973, 56, 1874.
- [29] H. B. Henbest, Nature (London) 1948, 161, 481; G. Büchi, K. Seitz, O. Jeger, Helv. Chim. Acta 1949, 32, 39;
 P. Karrer, C. H. Eugster, *ibid.* 1951, 34, 1400.
- [30] J.A. Findlay, W.D. Mackay, Can. J. Chem. 1971, 49, 2369; T. Oritani, K. Yamashita, Agric. Biol. Chem. 1970, 34, 1821.
- [31] W. Cocker, K.J. Crowley, K. Srinivasan, J. Chem. Soc., Perkin Trans. 1 1973, 2485.
- [32] T. Kato, H. Kondo, Y. Kitano, G. Hata, Y. Takagi, Chem. Lett. 1980, 737; Y. Kitano, T. Kato, H. Kondo, T. Ashida, Bull. Chem. Soc. Jpn. 1982, 55, 3429.
- [33] R. Buchecker, P. Hamm, C. H. Eugster, Chimia 1971, 25, 192.
- [34] M. Acemoglu, C. H. Eugster, Helv. Chim. Acta 1984, 67, 471.
- [35] M. Acemoglu, C. H. Eugster, Helv. Chim. Acta 1984, 67, 184.
- [36] D. Surmatis, A. Ofner, J. Org. Chem. 1961, 26, 1171.
- [37] F. Kienzle, M. Hodler, Helv. Chim. Acta 1975, 58, 198.
- [38] A. Rüttimann, H. Mayer, Helv. Chim. Acta 1980, 63, 1456.
- [39] L. Bartlett, W. Klyne, W.P. Mose, P. M. Scopes, G. Galasko, A. K. Mallams, B. C. L. Weedon, J. Szabolcs, G. Toth, J. Chem. Soc. 1969, 2527.
- [40] P.J. Herring, J. Marine Biol. Ass. UK 1969, 49, 766.
- [41] V. Sturzenegger, R. Buchecker, G. Wagnière, Helv. Chim. Acta 1980, 63, 1074.
- [42] E. Märki-Fischer, R. Buchecker, C.H. Eugster, Helv. Chim. Acta 1984, 67, 2143.
- [43] P. Uebelhart, C. H. Eugster, Helv. Chim. Acta 1988, 71, 1983.
- [44] W. Eschenmoser, P. Uebelhart, C. H. Eugster, Helv. Chim. Acta 1981, 64, 2681.
- [45] G.M. Sheldrick, 'SHELXS-84', Univ. Göttingen, BRD 1984; 'SHELXTL', Version 5.1, Univ. Göttingen 1986.
- [46] M. R. Gmünder, 'Synthese von optisch aktiven Carotinoiden mit 7-Oxabicyclo[2.2.1]heptyl-Endgruppen', Dissertation, Universität Zürich, 1989.